Browse > Article
http://dx.doi.org/10.5467/JKESS.2022.43.6.661

Lithospheric Plate Motion Model: Development and Current Status  

Sung-Ho Na (Basic Science Research Institute, Gyeongsang National University)
Jungho Cho (Space Geodesy, Korea Astronomy and Space Science Institute)
Publication Information
Journal of the Korean earth science society / v.43, no.6, 2022 , pp. 661-679 More about this Journal
Abstract
Plate tectonics, with the continental drift theory and later strongly supported by the sea-floor spreading theory with evidence of paleo-geomagnetic fields, ocean floor sediments, successfully explained the slow but continuous movements of rigid lithospheres in geological time. Initially, plate motions were described as relative movements between adjacent plates, mainly based on paleo-geomagnetic reversal data. The advent of space geodetic techniques in the 1980s enabled direct measurements of plate velocities and assessment of deformations within certain regions. In this review, early relative plate motion models are briefly summarized, the no-net-rotation frame theory and corresponding models are explained, and the characteristics of the most recent models that incorporate intraplate deformation are described. Additionally, the plate motion section of the International Terrestrial Reference Frame is introduced, and a few recent case studies of local plate motion are briefly described; for example, in South America, Europe, Antarctica, and Turkey. Finally, studies of plate motion in northeastern Asia focusing on the Korean Peninsula are introduced.
Keywords
Plate Tectonics; Plate Motion; ITRF;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 국토지리정보원, 2017, 국가측지기준체계(ITRF) 적용방안 수립연구, 155면.
2 김영호, 2018, 베게너의 지구, 나무와 숲, 276면.
3 최진범외 5인, 2009, 지구라는 행성, 이지북, 520면.
4 Skinner, B., Murck, B. W., 2013, 푸른행성지구, 박수인외 8인 공역, 시그마프레스, 695면.
5 Aktug, B. et al, 2009, Deformation of western Turkey from a combination of permanent and campaign GPS data: Limits to block-like behavior, J. Geophys. Res. 114, B10404. doi:10.1029/2008JB006000   DOI
6 Altamimi, Z., Metivier, L, Collilieux, X., 2012, ITRF2008 plate motion model, J. Geophys. Res. 117, B07402. doi:10.1029/2011JB008930   DOI
7 Altamimi, Z., Rebischung, P., Metivier, L., Collilieux, X., 2016, ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions, J. Geophys. Res., 121, 6109-6131. doi:10.1002/2016JB013098   DOI
8 Argus, D. F., Gordon, R. G., 1991, NO-NET-ROTATION MODEL OF CURRENT PLATE VELOCITIES INCORPORATING PLATE MOTION MODEL NUVEL-1, Geophys. Res. Lett. 18(11), 2039-2042.   DOI
9 Argus, D. F., Gordon, R. G., DeMets, C., 2011, Geologically current motion of 56 plates relative to the no-net-rotation reference frame, Geochem. Geophys. Geosys. 12, Q11001. doi:10.1029/2011GC003751   DOI
10 Bird, P., 2003, An Updated Digital Model of Plate Boundaries, Geochem. Geophys. Geos. 4(3), 1027. doi:10.1029/2001GC000252   DOI
11 Bouin, M. N., Vigny, C., 2000, New constraints on Antarctic plate motion and deformation from GPS data, J. Geophys. Res. 105(B12), 28279-28293.   DOI
12 Chase, C. G., 1972, The N Plate Problem of Plate Tectonics Geophys. J. RaS. 29, 117-122.
13 Chase, C. G., 1978, PLATE KINEMATICS: THE AMERICAS, EAST AFRICA AND REST OF THE WORLD, Ear. Pl. Sci. Let. 37, 355-368.   DOI
14 DeMets. C., Gordon, R. G., Argus, D. F., Stein., S., 1990, Current plate motions, Geophys. J. Int. 101, 425-478.   DOI
15 DeMets, C., Gordon, R. G., Argus, D., Stein, S., 1994, Effect of recent revisions to geomagnetic reversal time scale on estimates of current plate motions, Geophys. Res. Lett. 21(20), 2191-2194.   DOI
16 Dietrich, R. et al, 2001, ITRF coordinates and plate velocities from repeated GPS campaigns in Antarctica - an analysis based on different individual solutions, J. Geod. 75, 756-766.   DOI
17 Drewes, H., 2009, The Actual Plate Kinematics and Crustal Deformation Model APKIM2005 as Basis for a Non-Rotating ITRF, Geodetic Reference Frames, IAG Symposia 134, 91-99.
18 Drewes, H., 2008 and 2010, The Actual Plate Kinematics and Crustal Deformation Model 2008 based on the ITRF realisations on DGFI and IGN (APKIM2008). https://www.researchgate.net/publication/318109644
19 Hamdy, A., Park, P., Lim, H. C., Park, K. D., 2004, Present-day relative displacement between Jeju Island and Korean Peninsula, Ear. Pl. Sp. 56, 927-931.   DOI
20 Hamdy, A., Park, P., Lim, H. C., 2005, Horizontal deformation in South Korea from permanent GPS network data 2000-2003, Ear. Pl. Sp. 57, 77-82.   DOI
21 Heki, K. et al, 1999, The Amurian Plate Motion and current plate kinematics in eastern Asia, J. Geophys. Res. 104(B12), 29147-29155.   DOI
22 Jin, S., Park, P., 2006, Strain accumulation in South Korea inferred from GPS measurements, Ear. Pl. Sp. 58, 529-534.   DOI
23 Kreemer, C., Blewitt, G., Klein, E. C., 2014, A geodetic plate motion and Global Strain Rate Model, Geochem. Geophys. Geosys. 15, 3849-3889. doi:10.1002/2014GC005407   DOI
24 Jin., S., Park, P., Zhu, W., 2007, Micro-plate tectonics and kinematics in Northeast Asia inferred from a dense set of GPS observations, Ear. Pl. Sci. Lett. 257, 486-496.   DOI
25 King, M. A., Whitehouse, P. L., van der Wal, W., 2016, Incomplete separability of Antarctic plate rotation from glacial isostatic adjustment deformation within geodetic observations, Geophys. J. Int. 204, 324-330. doi:10.1093/gji/ggv461   DOI
26 Kreemer, C., Holt, W. E., 2001, A no-net-rotation model of present-day surface motions, Geophys. Res. Lett. Res. 28(23), 4407-4410.   DOI
27 Le Pichon, X., 1968, Sea-Floor Spreading and Continental Drift, J. Geophys. Res. 73(12), 3661-3697.   DOI
28 Li, S., Li., C., Wang C., 2020, Boundaries of the Amurian Plate identified using multiple geophysical methods, Geos. J. 24, 49-59. doi:10.1007/s12303-019-0011-1   DOI
29 Minster, J. B., Jordan, T. H., Molnar, P., Haines, E., 1974, Numerical Modelling of Instantaneous Plate Tectonics, Geophys. J. RaS. 36, 541-576.
30 Minster, J. B., Jordan, T. H., 1978, PRESENT-DAY PLATE MOTIONS, J. Geophys. Res. 83(B11), 5331-5354.   DOI
31 Morgan, J., 1968, Rises, Trenches, Great Faults, and Crustal Blocks, J. Geophys. Res. 73(6), 1959-1982.   DOI
32 Park, P., Chawe, U., Ahn, Y., Choi, K., 2001, Preliminary GPS results and a possible neotectonic interpretation for South Korea, Ear. Pl. Sp. 53, 937-941.   DOI
33 Petit, C., Fournier, M., 2005, Present-day velocity and stress fields of the Amurian Plate from thin-shell finite-element modelling, Geophys. J. Int. 160, 357-369.
34 Solomon, S. C., Sleep, N. H., 1974, Some Simple Physical Models for Absolute Plate Motions, J. Geophys. Res. 79(17), 2557-2567.   DOI
35 Petit, G., Luzum, B., 2010, IERS Conventions(2010), IERS Conventions Centre.
36 Sanchez, L., Drewes, H., 2020, Geodetic Monitoring of the Variable Surface Deformation in Latin America, Int. Ass. Geod. Sym. doi:10.1007/1345_2020_91   DOI
37 Sella, G. F., Dixon, T. H., Mao, A., 2002, REVEL: A model for Recent plate velocities from space geodesy, J. Geophys. Res. 107(B5), 2081. doi:10.1029/2000JB000033   DOI
38 Tretyak, K., Vovk, A., 2016, Differentiation of the Rotational Movements of the European Continent's Earth Crust, Acta. Geodyn. Geomater. 13, 1(181), 5-18.