• Title/Summary/Keyword: 회전 관성

Search Result 241, Processing Time 0.02 seconds

Free Vibrations of Multispan Continuous Arches (다경간 연속 아치의 자유진동 해석)

  • 이병구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.2
    • /
    • pp.53-63
    • /
    • 1995
  • 본 논문의 다경간 연속아치의 자유진동에 관한 연구이다. 다경간 연속아치의 고유진 동수 및 진ㄷㅇ형을 산출하기 위하여 내부지점의 지점조건에 다른 경계조건식을 유도하였다. 아치의 선형은 포물선을 택하였으며, 회전-로울러-회전, 고정-회전-고정의 지점 조건을 갖는 2경간 연속아치에 대한 수치해석 결과를 제시하였다. Runge-Kutta maethod을 이용 하였다. 실제 수치해석예에서는 회전관성이 고유진동수에 미치는 영향을 고찰 하였으며, 무차원 고유진동수와 아치높이 지간길이비 및 세장비 사이의 관계를 분석하였다. 또한 실험을 토아여 이론적인 해석결과를 검증하였다.

  • PDF

Flexural-Torsional Free Vibrations of Circular Strip Foundation with Variable Breadth on Pasternak Soil (Pasternak지반으로 지지된 변화폭 원호형 띠기초의 휨-비틀림 자유진동)

  • Lee, Byoung Koo;Park, Kwang Kyou;Kang, Hee Jong;Yoon, Hee Min
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.5
    • /
    • pp.539-548
    • /
    • 2007
  • This paper deals with flexural-torsional free vibrations of the circular strip foundation with the variable breadth on Pasternak soil. The cross-section of the strip foundation is chosen as the rectangular one with the constant thickness and variable breadth, which is symmetrical about the mid-arc. Also, the foundation that supports the circular strip is modeled as the Pasternak soil with the shear layer. Ordinary differential equations accompanying the boundary conditions are derived. In the governing equations, the transverse, rotatory and torsional inertias are included. These equations are solved numerically and four lowest frequencies are obtained. In the numerical results, the effects of foundation parameters on frequencies are extensively investigated. It is expected that the theories and numerical results of this study can be used in the dynamic design of strip foundations.

Free Vibrations of Clamped Circular Arches with Linear Variable Cross-Section (1차원 변화단면을 갖는 양단고정 원호아치의 자유진동 해석)

  • Lee, Byoung Koo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.4
    • /
    • pp.1-8
    • /
    • 1989
  • The main purpose of the present paper is to present both the fundamental frequency and some higher free vibration frequencies for circular arches with variable section, in which rotatory inertia is included. The differential equations are derived for the in-plan free vibration of elastic circular arches with variable section. These equations were solved numerically for the linear variable circular cross-section with clamped-clamped end constraint. As the numerical results, the four lowest nondimensional natural frequencies presented as functions of the nondimensional system parameters : the end moment of inertia to crown moment of inertia ratio, the slenderness ratio, and the opening angle. The effect of rotatory inertia on the nondimensional natural frequency is also reported.

  • PDF

Planar Free Vibrations of Catenary Arcs (현수 곡선부재의 면내 자유진동 해석)

  • Lee, Byoung Koo;Oh, Sang Jin;Suh, Ju Suhk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.19-28
    • /
    • 1990
  • The main purpose of this paper is to present both fundamental and some higher natural frequencies of catenary arcs. The differential equations governing planar free vibrations for these arcs are derived, in which the rotatory inertia is included, as non-dimensional forms and solved numerically to obtain frequencies and mode shapes. The hinged-hinged and clamped-clamped end constraints are applied in numerical examples. The lowest four natural frequencies are reported as the functions of non -dimensional system parameters; the slenderness ratio and the rise to span length ratio. The effects of rotatory inertia on natural frequencies are reported and some typical mode shapes are also presented.

  • PDF

Design of an Initial-position Update Mooring Alignment Algorithm for Dual-axis Rotational INS Using a Kalman Filter (칼만 필터를 이용한 2축 회전형 관성항법장치의 초기위치 보정 정박 중 정렬 알고리즘 설계)

  • Kyung-don Ryu
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.4
    • /
    • pp.379-385
    • /
    • 2024
  • INS(inertial navigation system) aligns itself using gravity and Earth's rotational rate from accelerometers and gyro sensors when stationary. Typically, ZUPT(zero velocity update), which is based on a linear error model Kalman filter, is used when it is stationary. However, such algorithms assume stationary conditions, leading to increased alignment errors or filter divergence during maritime mooring due to wave-induced motion. This paper designs a mooring alignment algorithm for maritime platforms using a Kalman filter, which uses large heading angle error model and an initial position correction technique. And it is validated by simulation. Furthermore, it is confirmed that applying this to a rotational INS dramatically improves performance through the principle of bias cancellation.

Interferometric Measurement of Flexure Error in a Ring Laser Gyroscope (간섭계를 이용한 링레이저 자이로스코프의 플렉셔 오차 측정)

  • 김정주;이동찬;이재철;조민식;권용율
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.272-273
    • /
    • 2003
  • 링레이저 자이로스코프(Ring Laser Gyroscope-이하 RLG)는 비행기, 유도무기, 선박, 지상무기 등의 관성항법장치(Inertial Navigation System)에 사용되는 각속도 센서로서 항체의 위치와 자세 정보를 제공하는 핵심 구성품 중의 하나이다. 각속도 검출 원리는 삼각형 또는 사각형의 공진기에 He과 Ne을 혼합한 이득매질을 사용하여 서로 반대방향으로 회전하는 두 개의 레이저 빔을 발생시켜서 Sagnac 효과에 의해 외부의 회전 입력을 받을 때 서로 다른 광 경로의 차이로 인한 두 빔의 간섭으로 회전각을 검출한다. (중략)

  • PDF

Free Vibrations of Tapered Timoshenko Beam by using 4th Order Ordinary Differential Equation (4계 상미분방정식에 의한 변단면 Timoshenko 보의 자유진동)

  • Lee, Byoung-Koo;Park, Kwang-Kyou;Lee, Tae-Eun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.3
    • /
    • pp.185-194
    • /
    • 2012
  • This paper deals with free vibrations of the tapered Timoshenko beam in which both the rotatory inertia and shear deformation are included. The cross section of the tapered beam is chosen as the rectangular cross section whose depth is constant but breadth is varied with the parabolic function. The fourth order ordinary differential equation with respect the vertical deflection governing free vibrations of such beam is derived based on the Timoshenko beam theory. This governing equation is solved for determining the natural frequencies corresponding with their mode shapes. In the numerical examples, three end constraints of the hinged-hinged, hinged-clamped and clamped-clamped ends are considered. The effects of various beam parameters on natural frequencies are extensively discussed. The mode shapes of both the deflections and stress resultants are presented, in which the composing rates due to bending rotation and shear deformation are determined.

Study of of Flexible Multibody Dynamics with Rotary Inertia (회전관성 효과를 고려한 탄성 다물체 동력학에 관한 연구)

  • 김성수
    • Journal of KSNVE
    • /
    • v.6 no.3
    • /
    • pp.287-296
    • /
    • 1996
  • A virtual work form of flexible multibody dynamic formulation with rotary inertia has been derived. For the analysis of large flexible multibody systems, deformation modal coordinates have been employed to represent coupled motion between gross and vibrational motion. For the efficient evaluation of the entries in the mass matrix, a flexible body has been treated as a collection of mass points. The rotary inertia was generated from the consistent mass matrix in a finite element model. Deformation mode shapes were obtained from finite element analysis. Bending and twisting vibration analyses of a cantilever have been carried out to see rotary inertia effects. A space flexible robot simulation has been also carried out to show effectiveness of the proposed formulation. This formulation is effective to the model that consists of beam, plate, or shell element that contains rotational degree of freedom at the nodal point. It is also effective to the flexible body model to which a large lumped rotary inertia is attached.

  • PDF

Vibration Control of a Structure Using the Toggle-Rotational Inertia Damper (토글-회전관성댐퍼를 이용한 구조물의 진동제어)

  • Hwang, Jae-Seung;Choi, Rak-Sun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.586-590
    • /
    • 2006
  • This paper presents a new vibration control device by which the mass and damping of a structure is increased equivalently. The vibration control system, named toggle-rotational inertia-viscous damper, can be utilized effectively in applications of small structural drift. Numerical analysis shows that because the relative drift of a structure can be effectively amplified by the toggle system, the device has a great performance in the vibration control without the increase of the damper capacity and size. It is also observed that vibration control effects is caused by the increase of equivalent mass and damping due to the rotational inertia and damping of the device.

  • PDF

Modeling and Vibration Analysis of Rotating Cantilever Deams Considering Shear and Rotary Inertia Effects (전단 및 단면 관성효과를 고려한 회전 외팔보의 모델링 및 진동해석)

  • 신상하;유홍희
    • Journal of KSNVE
    • /
    • v.6 no.2
    • /
    • pp.179-185
    • /
    • 1996
  • This paper presents a modeling method for the vibration analysis of a rotating beam the slenderness ratio of which is relatively small. The smaller the slenderness ratio becomes, the larger the shear and rotary inertia effects become. Such effects become critical for the accurate estimation of the natural frequencies and modeshapes, especially higher frequencies and modes, as the angular speed increases. It is also shown that the effects are important for the accurate estimation of the critical angular speed of the beam.

  • PDF