• Title/Summary/Keyword: 회전탄성원판

Search Result 4, Processing Time 0.017 seconds

Dynamic Characteristics of Thick Rotating Composite Disks (두꺼운 복합재료 회전원판의 동적 특성)

  • Koo, Kyo-Nam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.8
    • /
    • pp.649-656
    • /
    • 2016
  • Thick composite disks are utilized in the fast-rotating machines such as turbine disks, flywheels, and so on. The effects of rotating speed on the dynamic characteristics of thick composite disks are deeply studied in this paper. The dynamic governing equations of a rotating composite disk including transverse shear and rotary inertia are derived and then formulated into the finite element equation. Isotropic, circumferentially reinforced disk, and radially reinforced disk are selected for the numerical analysis. The inclusion of the transverse shear and rotary inertia into the governing equation of the rotating disks makes the natural frequency reduced as well as the critical speed. The present results show that the rotation of a thick disk may not reduce the effect of transverse shear and rotary inertia depending on anisotropy, thickness ratio and mode, unlike the results reported in other studies.

Effects of Transverse Shear Deformation and Rotary Inertia on Vibration of Rotating Polar Orthotropic Disks (극직교 이방성 회전원판의 진동에 대한 횡전단변형 및 회전관성 효과)

  • Kim, Dong-Hyun;Koo, Kyo-Nam
    • Composites Research
    • /
    • v.20 no.3
    • /
    • pp.43-49
    • /
    • 2007
  • Dynamic instability of rotating disks is the most significant factor to limit its rotating speed. Application of composite materials to rotating disks may enhance the dynamic stability leading to a possible design of rotating disks with lightweight and high speed. Whereas much work has been done on the effect of transverse shear and rotary inertia, called Timoshenko effect, on the dynamic behavior of plates, there is little work on the correlation between the effect and the rotation of disk, especially nothing in case of composite disks. The dynamic equations of a rotating composite disk are formulated with the Timoshenko effect and the vibrational analysis is performed by using a commercial package MSC/NASTRAN. According to the results, the Timoshenko effect goes seesaw in some modes, unlike the well-known fact that the effect decreases as the rotating speed increases. And it can be concluded, based only on the present results, that decrement of the Timoshenko effect by disk rotation grows larger as the thickness ratio decreases, the diameter ratio increases, the modulus ratio increases, and the mode number increases.

Effect of viscous damping force subjected to a rotating flexible disk (점성감쇠력이 회전탄성원판에 미치는 영향)

  • Kong, Dae-Wee;Joo, Won-Gu
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.185-190
    • /
    • 2001
  • Rotating disks are used in various machines such as floppy disks, hard disk, turbines and circular sawblades. The problems of vibrations of rotating disks are important in improving these machines. Many investigators have dealt with these problem. Specially, vibrations of a rotating flexible disk taking into account the effect of air is difficult problem in simulation. The governing equation of a rotating flexible disk coupled to the surrounding fluid is investigated by a simple mathematical model. And several important parameters concerned with the stability of a rotating flexible disk are defined. Coupling strength between air and rotating flexible disk is proportional to square of disk radius directly and square root of the all of bending rigidity, disk density and thickness inversely. Lift-to-damping coefficient has relation to the onset of disk flutter.

  • PDF

A Study on Heaping of Granules (알갱이 군의 무더기 현상에 관한 연구)

  • Han, Ji Heum;Han, Won Heum;Lee, Kwang-Hee
    • Journal of Adhesion and Interface
    • /
    • v.14 no.4
    • /
    • pp.183-191
    • /
    • 2013
  • In order to elucidate the granular heaping phenomenon, the movement behaviors of 3 different types of granule (millet, sand and thin foil disc) have been investigated by applying the vertical or the rotational vibration to each of the 3 vessels, respectively containing one of the 3 types of granule. In case of vertical vibrations, all of them showed the heaping phenomenon like Gerner's simulation, and that in the order of the millet, sand and thin foil disc, regardlessly of weight. Especially, a heaping of disc granules was proven to be relatively delayed, and that with several small complex clutters. For rotational vibration, the central area of vessel turned out to rise up due to the repulsive force by vessel wall as well as the collision between elastic granules, right after the turning point of vibration. Even spiral pattern was made when the rotational vibration amplitude got higher. From these facts, one can see that the heaping be characterized by the inclusion of attractive granules as well as the vibrational type applied to granule vessel.