• 제목/요약/키워드: 회귀분석모델

Search Result 1,538, Processing Time 0.038 seconds

Study on the Estimation of Duncan & Chang Model Parameters-initial Tangent Modulus and Ultimate Deviator Stress for Compacted Weathered Soil (다짐 풍화토의 Duncan & Chang 모델 매개변수-초기접선계수와 극한축차응력 산정에 관한 연구)

  • Yoo, Kunsun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.12
    • /
    • pp.47-58
    • /
    • 2018
  • Duncan & Chang(1970) proposed the Duncan-Chang model that a linear relation of transformed stress-strain plots was reconstituted from a nonlinear relation of stress-strain curve of triaxial compression test using hyperbolic theory so as to estimate an initial tangent modulus and ultimate deviator stress for the soil specimen. Although the transformed stress-strain plots show a linear relationship theoretically, they actually show a nonlinearity at both low and high values of strain of the test. This phenomenon indicates that the stress-strain curve is not a complete form of a hyperbola. So, if linear regression analyses for the transformed stress-strain plot are performed over a full range of strain of a test, error in the estimation of their linear equations is unavoidable depending on ranges of strain with non-linearity. In order to reduce such an error, a modified regression analysis method is proposed in this study, in which linear regression analyses for transformed stress-strain plots are performed over the entire range of strain except the range the non-linearity is shown around starting and ending of the test, and then the initial tangent modulus and ultimate deviator stresses are calculated. Isotropically consolidated-drained triaxial compression tests were performed on compacted weathered soil with a modified Proctor density to obtain their model parameters. The modified regression analyses for transformed stress-strain plots were performed and analyzed results are compared with results estimated by 2 points method (Duncan et al., 1980). As a result of analyses, initial tangent moduli are about 4.0% higher and ultimate deviator stresses are about 2.9% lower than those values estimated by Duncan's 2 points method.

A FFP-based Model to Estimate Software Development Cost (소프트웨어 개발비용을 추정하기 위한 FFP 기반 모델)

  • Park, Ju-Seok;Chong, Ki-Won
    • The KIPS Transactions:PartD
    • /
    • v.10D no.7
    • /
    • pp.1137-1144
    • /
    • 2003
  • The existing Function Point method to estimate the software size has been utilized frequently with the management information system. Due to the expanding usage of the real-time and embedded system, the Full Function Point method is being proposed. However, despite many research is being carried out relation to the software size, the research on the model to estimate the development cost from the measured software size is inadequate. This paper analyzed the linear regression model and power regression model which estimate the development cost from the software FFP The power model is selected, which shows its estimation is most adequate.

A Success Prediction Model for Debut Webtoon Based on Reader reaction Using Deep Learning and Machine Learning (딥러닝과 머신러닝을 활용한 독자 반응 기반 웹툰 데뷔작 성공 예측 모델)

  • Heo, Eun Yeong;Kim, Seung Hwa;Kim, Hyon Hee
    • Annual Conference of KIPS
    • /
    • 2019.10a
    • /
    • pp.770-773
    • /
    • 2019
  • 본 논문에서는 매년 성장하는 웹툰 시장 속에서 신인 작가들이 성공할 수 있는 성공 요인을 밝히고자 하였다. 국내 1위 웹툰 플랫폼인 네이버 웹툰 중 데뷔작을 기준으로 완결 웹툰 212개, 연재 중인 웹툰 112개, 총 324개의 웹툰을 수집하여 연구를 진행하였다. 기존 선행연구와의 차별화를 두기 위해 독자의 직접적인 반응 중 하나인 댓글을 성공 요인에 포함하였다. 댓글에 담긴 긍정, 부정을 나타내는 주관을 탐지하기 위해 딥러닝을 이용하여 감성 분석을 실시하였다. 각 웹툰에 대한 댓글 반응을 포함하여 평균, '좋아요' 수, 장르 그리고 첫 화 댓글 수와 5화까지 평균 댓글 수를 흥행에 영향을 미치는 독립변수로 사용했다. 댓글 반응이 중요 요인인지를 확인하기 위해 각 모델 생성 시 댓글 반응을 포함한 모델과 포함하지 않은 모델을 생성하여 성능 평가를 실시하였다. 로지스틱 회귀분석, 아다 부스트, 그리고 서포트 벡터 머신 모델을 정확도와 ROC 그래프를 이용해 효율성을 비교하고, 이를 통해 댓글 반응을 활용한 로지스틱 회귀 모델이 가장 적합하다고 판단하였다. 모델 생성 결과 '좋아요' 수, 1화 댓글 수, 댓글 반응 순으로 성공 요인에 많은 영향을 미치는 것을 알 수 있었다.

Study on abnormal behavior prediction models using flexible multi-level regression (유연성 다중 회귀 모델을 활용한 보행자 이상 행동 예측 모델 연구)

  • Jung, Yu Jin;Yoon, Yong Ik
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • In the recently, violent crime and accidental crime has been generated continuously. Consequently, people anxiety has been heightened. The Closed Circuit Television (CCTV) has been used to ensure the security and evidence for the crimes. However, the video captured from CCTV has being used in the post-processing to apply to the evidence. In this paper, we propose a flexible multi-level models for estimating whether dangerous behavior and the environment and context for pedestrians. The situation analysis builds the knowledge for the pedestrians tracking. Finally, the decision step decides and notifies the threat situation when the behavior observed object is determined to abnormal behavior. Thereby, tracking the behavior of objects in a multi-region, it can be seen that the risk of the object behavior. It can be predicted by the behavior prediction of crime.

Development of a Model for Estimating Leaf Area and the Number of Flower Using Leaf Length and Width of Farfugium japonicum Kitam. (털머위(Farfugium japonicum Kitam.)의 엽장과 엽폭을 이용한 엽면적 및 개화 수 추정 모델 개발)

  • Dae Ho Jung;Yong Suk Chung;Hyunseung Hwang
    • Journal of Bio-Environment Control
    • /
    • v.32 no.2
    • /
    • pp.115-121
    • /
    • 2023
  • The leopard plant has the characteristic of being used for ornamental purposes when there are yellow spots on the leaves, and is widely used as a bed plant for viewing flowers. To set several indicators to predict the growth of crops with ornamental value, and to quantitatively express the relationship between the indicators are necessary. In this study, we determine a model that estimates the leaf area and the number of flower of Farfugium japonicum Kitam. using leaf length and width, and conducting a regression analysis on some regression models. As an indicator for estimating the leaf area and the number of flower, the leaf length and width of F. japonicum were measured and applied to 8 regression models. As a result of regression analysis of 8 models that estimated leaf area and the number of flower, R2 values of the linear models were all higher than 0.84 and 0.80. As a result of validation, using the most reliable model among the models for estimating the leaf area and the number of flowering, R2 was 0.90 and 0.82, respectively. Using a model that estimates various indicators that can be used for quality evaluation from easy-to-measure morphological factors, the evaluation of ornamental plants will be facilitated.

Blood Loss Prediction of Rats in Hemorrhagic Shock Using a Linear Regression Model (출혈성 쇼크를 일으킨 흰쥐에서 선형회귀 분석모델을 이용한 출혈량 추정)

  • Lee, Tak-Hyung;Lee, Ju-Hyung;Choi, Jae-Rim;Yang, Dong-In;Kim, Deok-Won
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.1
    • /
    • pp.56-61
    • /
    • 2010
  • Hemorrhagic shock is a common cause of death in the emergency department. The purpose of this study was to investigate the relationship between blood loss as a percent of the total estimated blood volume (% blood loss) and changes in several physiological parameters. The other goal was to achieve an accurate prediction of percent blood loss for hemorrhagic shock in rats using a linear regression model. We allocated 60 Sprague-Dawley rats into four groups: 0ml, 2ml, 2.5ml, 3 mL/100 g during 15 min. We analyzed the heart rate, systolic and diastolic blood pressure, respiration rate, and body temperature in relation to the percent blood loss. We generated a linear regression model predicting the percent blood loss using a randomly chosen 360 data set and the R-square value of the model was 0.80. Root mean square error of the tested 360 data set using the linear regression was 5.7%. Even though the linear regression model is not directly applicable to clinical situation, our method of predicting % blood loss could be helpful in determining the necessary fluid volume for resuscitation in the future.

A study on data collection environment and analysis using virtual server hosting of Azure cloud platform (Azure 클라우드 플랫폼의 가상서버 호스팅을 이용한 데이터 수집환경 및 분석에 관한 연구)

  • Lee, Jaekyu;Cho, Inpyo;Lee, Sangyub
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.329-330
    • /
    • 2020
  • 본 논문에서는 Azure 클라우드 플랫폼의 가상서버 호스팅을 이용해 데이터 수집 환경을 구축하고, Azure에서 제공하는 자동화된 기계학습(Automated Machine Learning, AutoML)을 기반으로 데이터 분석 방법에 관한 연구를 수행했다. 가상 서버 호스팅 환경에 LAMP(Linux, Apache, MySQL, PHP)를 설치하여 데이터 수집환경을 구축했으며, 수집된 데이터를 Azure AutoML에 적용하여 자동화된 기계학습을 수행했다. Azure AutoML은 소모적이고 반복적인 기계학습 모델 개발을 자동화하는 프로세스로써 기계학습 솔루션 구현하는데 시간과 자원(Resource)를 절약할 수 있다. 특히, AutoML은 수집된 데이터를 분류와 회귀 및 예측하는데 있어서 학습점수(Training Score)를 기반으로 보유한 데이터에 가장 적합한 기계학습 모델의 순위를 제공한다. 이는 데이터 분석에 필요한 기계학습 모델을 개발하는데 있어서 개발 초기 단계부터 코드를 설계하지 않아도 되며, 전체 기계학습 시스템을 개발 및 구현하기 전에 모델의 구성과 시스템을 설계해볼 수 있기 때문에 매우 효율적으로 활용될 수 있다. 본 논문에서는 NPU(Neural Processing Unit) 학습에 필요한 데이터 수집 환경에 관한 연구를 수행했으며, Azure AutoML을 기반으로 데이터 분류와 회귀 등 가장 효율적인 알고리즘 선정에 관한 연구를 수행했다.

  • PDF

Later-Age Strength Prediction of Concrete With Curing Temperature (양생온도에 따른 콘크리트 장기강도 예측)

  • 김진근;문영호;양주경;송영철
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.3
    • /
    • pp.153-164
    • /
    • 1998
  • 본 연구는 양생온도의 영향에 따른 콘크리트의 장기강도 예측식을 개발하고, 기존에 보고된 데이터를 이용하여 제안식의 신뢰성을 검증하기 위한 것이다. 제안식은 반응률상수 모델을 이용하였으며, 콘크리트의 장기강도에 영향을 미치는 인자로 양생온도에 따른 확산장벽의 효과를 고려하였다. 제안식을 검증하기위하여 각각의 데이터를 28일 상대강도의비로바꾸어 -0.6~59.7$^{\circ}C$ 범위의 8개의 평균 양생온도에 대해서 회귀분석하였다. 회귀분석을통해 제안식의 온도 영향계수인 반응율상수, 한계강도, 반응지수를 양생온도에 따른 함수식으로 표현하였다. 제안식은 기존의모델식에 비해 신뢰성이 높았으며, 초기재령에서는 기존의 모델식등과 큰 차이를나타내지 않았으나 장기재령으로 갈수록 제안식의 정확도가 크게 높아짐을 알 수 있었다.

Developing a Security Systems Operation Cost Estimation Model : A Transformation Model to Function Point (증권시스템 운영비용 산정 모델 개발 : 프로그램 본수의 기능점수 변환 모델)

  • Choi, Won-Young;Kim, Hyun-Soo
    • 한국IT서비스학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.145-152
    • /
    • 2003
  • 본 연구의 선행 연구에서는 증권시스템의 기능점수를 직접 구하여 기능점수와 운영비용과의 회귀분석을 실시하였다. 수집된 자료의 건수가 적었던 관계로 통계적 유의성을 충분하게 확보하지 못하였다. 따라서 본 연구에서는 증권시스템의 기능점수를 직접 측정하는 것이 현실적으로 많은 제약이 있음을 감안하여, 비교적 자료 수집이 용이한 프로그램 본 수를 측정하였다. 이러한 프로그램 본 수는 스텝 수로 1차 변환이 되었고, 스텝 수는 다시 기능점수로 2차 변환이 되었다. 이렇게 변환된 기능점수와 운영비용과의 회귀분석을 실시하였으며, 증권정보시스템 운영비용 추정 모델을 제시하였다.

  • PDF

Realtime Fuel Consumption Prediction using ln-Vehicle Data from OBDII and Regression Methods (OBDII 데이터 기반의 회귀 분석을 통한 실시간 연료 소비량 예측)

  • Yang, Hee-Eun;Kim, Do-Hyun
    • Annual Conference of KIPS
    • /
    • 2020.05a
    • /
    • pp.497-499
    • /
    • 2020
  • 자율주행 차량이 많아지고 차량의 ECU가 고도화되면서 정확한 차량의 데이터를 획득하고 분석하여 활용하는 것이 중요해지고 있다. 현재에는 내연 기관 차량의 ECU 데이터를 얻기 위해서 OBDII 포트(규격)에 기반한 CAN동선을 주로 이용하고 있다. 하지만 OBDII 규격을 통해서 연비와 같은 중요한 차량 정보를 얻는 경우, 변환식 (MAF 센서(흡입 공기량 센서)와 공기/연료 비율을 이용)의 오차 범위가 커서 데이터의 정확도가 낮다. 본 연구에서는 머신 러닝 기법 중에 하나인 회귀 기법을 통해서 기존의 계산보디 더 정확한 연비를 구할 수 있는 모델을 개발하였다. 이러한 모델 개발을 통하여 차량의 RAW 데이터를 기반으로 필요한 차량 데이터를 정확하게 구할 수 있게 되었으며 20회가 넘는 실 도로주행을 통해서 본 모델의 정확도를 검증하였다.