• Title/Summary/Keyword: 황해와 동중국해

Search Result 53, Processing Time 0.031 seconds

Estimation of Monthly Dissolved Inorganic Carbon Inventory in the Southeastern Yellow Sea (황해 남동부 해역의 월별 용존무기탄소 재고 추정)

  • KIM, SO-YUN;LEE, TONGSUP
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.27 no.4
    • /
    • pp.194-210
    • /
    • 2022
  • The monthly inventory of dissolved inorganic carbon (CT) and its fluxes were simulated using a box-model for the southeastern Yellow Sea, bordering the northern East China Sea. The monthly CT data was constructed by combining the observed data representing four seasons with the data adopted from the recent publications. A 2-box-model of the surface and deep layers was used, assuming that the annual CT inventory was at the steady state and its fluctuations due to the advection in the surface box were negligible. Results of the simulation point out that the monthly CT inventory variation between the surface and deep box was driven primarily by the mixing flux due to the variation of the mixed layer depth, on the scale of -40~35 mol C m-2 month-1. The air to sea CO2 flux was about 2 mol C m-2 yr-1 and was lower than 1/100 of the mixing flux. The biological pump flux estimated magnitude, in the range of 4-5 mol C m-2 yr-1, is about half the in situ measurement value reported. The CT inventory of the water column was maximum in April, when mixing by cooling ceases, and decreases slightly throughout the stratified period. Therefore, the total CT inventory is larger in the stratified period than that of the mixing period. In order to maintain a steady state, 18 mol C m-2 yr-1 (= 216 g C m-2 yr-1), the difference between the maximum and minimum monthly CT inventory, should be transported out to the East China Sea. Extrapolating this flux over the entire southern Yellow Sea boundary yields 4 × 109 g C yr-1. Conceptually this flux is equivalent to the proposed continental shelf pump. Since this flux must go through the vast shelf area of the East China Sea before it joins the open Pacific waters the actual contribution as a continental shelf pump would be significantly lower than reported value. Although errors accompanied the simple box model simulation imposed by the paucity of data and assumptions are considerably large, nevertheless it was possible to constrain the relative contribution among the major fluxes and their range that caused the CT inventory variations, and was able to suggest recommendations for the future studies.

Distribution of Fish Larvae and Juveniles in the East China Sea and the Yellow Sea in Spring during 1994-1997 (1994-1997년 봄철 동중국해 및 황해 자치어 분포)

  • KIM Jin Koo;KANG Chung Bae;AHN Geon;OKI Daiju;KIM Yong Uk;TABETA Osame
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.38 no.1
    • /
    • pp.29-38
    • /
    • 2005
  • The distributions of fish larvae and juveniles from the East China Sea, Yellow Sea and near Tsushima Island were investigated in Spring using the Maruchi (1994-1995) and Unagi (1996-1997) nets. A total of 94 species of fish larvae and juveniles belonging to 49 families under 17 orders were identified, of which Engraulis japonicus was dominant in every year except 1995 where Trachurus japonicus was dominant. Cluster analysis based on abundance and species composition by sampling stations (St.) revealed that the similar stations formed an arcuate group from Tsushima Island to southern Jeju Island in 1994, and from the Yellow Sea to southern Jeju Island in 1996. We concluded that these patterns resulted from the influence of the Tsushima Current prevailing in the east, and the Chinese Continental Waters and/or Hwanghae Cold Waters prevailing in the west, with Jeju Island exerting an influence in the centre. The diversity and composition of St. 97-3 and St. 97-5, both located where the Tsushima Current splits from the Kuroshio Current, was greatly different despite their close proximity. However, the former is located on the continental shelf, with the latter on the continental slope. This suggested that both topography and the Kuroshio Current have the most influence on the distribution of fish larvae and juveniles in this region. Furthermore, the weak Hwanghae Cold Waters of 1997 may have also limited the mixing of fish larvae and juveniles between the two stations.

Long-term changes in the small yellow croaker, Larimichthys polyactis, population in the Yellow and East China Seas (황해 및 동중국해 참조기, Larimichthys polyactis 자원의 장기변동)

  • Yeon, In-Ja;Lee, Dong-Woo;Lee, Jae-Bong;Choi, Kwang-Ho;Hong, Byung-Kyu;Kim, Joo-Il;Kim, Young-Seop
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.46 no.4
    • /
    • pp.392-405
    • /
    • 2010
  • The population of small yellow croaker, Larimichthys polyactis, in the Yellow and East China Seas has decreased significantly since the mid 1970s. Several management measures have been introduced to conserve it, but population size remains low. To rebuild this population, it is now necessary to consider more effective management methods based on the stock assessment. To determine long-term population changes, fishery and biological data collected over 34 years (1969-2002) were analysed. Yearly fish length compositions were analysed for the time periods 1968 through 1970, 1978 through 1982, and 1993 through 2002; and catch data was available from 1969 to 2002. Annual population sizes were calculated based on length composition, the relationship between total length and body weight, and total landings. Analyses showed that since the 1970s, average size of harvested fish decreased; the proportion of less mature fish (smaller than the 50% maturity length, 19cm) in catches has increased and the estimated biomass has decreased significantly. Consequently, the main management recommendation is that juvenile fish need to be better protected to allow the rebuilding of resources to a more sustainable population level. This will require fish size limit, permissible mesh size, and closed area and season regulations.

Population Characteristics of the Venomous Giant Jellyfish, Nemopilema nomurai, found in the Yellow and Northern East China Seas (황해 중앙부와 동중국해 북부 해역에서의 대형 독성 노무라입깃해파리의 개체군 특성 연구)

  • Soo-Jung Chang;Jang-Seu Ki
    • Journal of Environmental Science International
    • /
    • v.33 no.1
    • /
    • pp.87-95
    • /
    • 2024
  • The giant jellyfish, Nemopilema nomurai, is an endemic species found in Northeast Asian waters and their population structures, such as size and genetics, and their environmental characteristics were investigated. N. nomurai was obtained from the Yellow and Northern East China Seas during the summers of 2006, 2007, and 2009. In the northern Yellow Sea, small-sized jellyfish were found to be dominant and towards the southern seas, the size of the jellyfish increased. In the northern East China Sea, only one mode of jellyfish was found in May, and the number of modes increased up-to five in July. However, at the center of the Yellow Sea, one or two modes were found in July, 2007. Thus, different jellyfish populations were present in the northern East China Sea and the Yellow Sea. However, based on first appearance and a cohort analysis using the bell diameter, the jellyfish population in the northern Yellow Sea might be recognized as a distinct group that differed from those found in the northern East China Sea. Furthermore, mitochondrial DNA sequences (cytochrome c oxidase subunit I) of N. nomurai were, determined and compared with genetic structures obtained from jellyfish in the Yellow Sea. The genetic diversity of N. nomurai was highest in the regions around the northern East China Sea and at the center of the Yellow Sea and was the lowest around the northern Yellow Sea. Thus, N. nomurai populations in the Yellow Sea and northern East China Sea might be different concerning their seeding places.

The Spatial Issue of K490 using MODIS Data (MODIS 자료에 의한 K490 공간 특성)

  • Jeong, Jong-Chul
    • Proceedings of the KSRS Conference
    • /
    • 2009.03a
    • /
    • pp.151-154
    • /
    • 2009
  • MODIS Aqua에 의한 한반도 주변 해역의 관측은 엽록소의 변동을 관측하여 해양환경변화를 관측하는데 주로 연구되었다. 그러나 황해는 Case II 해역으로 해양의 엽록소 관측에 오차가 크기 때문에 동해와 남해, 동중국해역을 관측한 연구가 발표되어 왔다. 특히 적조와 같은 이상변동을 관측하는데 해색자료의 활용은 매우 활발한 연구가 이루어졌다. 하지만 K490(Diffuse attenuation coefficient for downwelling irradiance at 490nm)은 OCTS, SeaWiFS, MODIS, MERIS 등의 해색자료에 의해 많은 자료가 생산되고 있으나 이를 이용한 한반도 주변 해역의 해양환경변동에 관한 연구는 부족한 실정이다. 본 연구에서는 2008년 한반도 주변해역에서 관측된 MODIS 자료를 처리하여 K490에 의한 시-공간적 변화를 분석하였다. 특히 K490에 의한 월 변화(monthly)와 통계처리 결과를 분석하여 기후변화의 주요 분석인자인 해양의 일차생산력을 판단하는데 중요한 영향을 미치는 K490의 공간 특성을 제시하였다. 한반도 주변 해역의 K490에 의한 시-공간적 특성은 육상의 주요 하천에서 기인하는 부유사와 서남해역의 재부유 물질에 의한 영향이 시-공간적으로 뚜렷하게 나타나는 것을 파악할 수 있었다.

  • PDF

Summer Environmental Evaluation of Water and Sediment Quality in the South Sea and East China Sea (남해 및 동중국해의 하계 수질 및 저질 환경평가)

  • Lee, Dae-In;Cho, Hyeon-Seo;Yoon, Yang-Ho;Choi, Young-Chan;Lee, Jeong-Hoon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.2
    • /
    • pp.83-99
    • /
    • 2005
  • To evaluate environmental charateristics of the South Sea and East China Sea on summer, water and sediment quality were measured in June 2001-2003. Surface layer was affceted by Warm water originated from the high temperature and salinity-Tsushima Warm Current, on the other hand, Yellow Sea Cold Water was spread to the bottom layer in the south-western part of the Jeju island, and salinity at stations near the Yangtze River was decreased below 29psu because of a enormous freshwater discharges. Thermocline-depth was formed at about 10m, and chlorophyll maximum layer was existed in and below the thermocline. COD(Chemical Oxygen Demand), TN(Total Nitrogen), and TP(Total Phosphorus) concentrations showed seawater quality grade II in surface layer of the most area, but concentrations of such as COD, Chl. a, TSS(Total Suspended Solid), and nutrients were greatly increased in the effect area of Yangtze River discharges. Correlations between dissolved inorganic nitrogen, Chl. a and salinity were negative patterns strongly, in contrast, those of inorganic phosphorus, COD and Chl. a were positive, which indicates that phytoplankton biomass and phosphorus are considered as important factors of organic matter distribution and algal growth, respectively. in the study area. The distribution of ignition loss, COD, and $H_2S$ of surface sediment were in the ranges of 2.61-8.81%, $0.64-11.86mgO_2/g-dry$, and ND-0.25 mgS/g-dry, respectively, with relatively high concentration in the eastern part of the study area. Therefore, to effective and sustainable use and management of this area, continuous monitoring and countermeasures about major input sources to the water and sediment, and prediction according to the environmental variation, are necessary.

  • PDF

Impacts of OSTIA Sea Surface Temperature in Regional Ocean Data Assimilation System (지역 해양순환예측시스템에 대한 OSTIA 해수면온도 자료동화 효과에 관한 연구)

  • Kim, Ji Hye;Eom, Hyun-Min;Choi, Jong-Kuk;Lee, Sang-Min;Kim, Young-Ho;Chang, Pil-Hun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.20 no.1
    • /
    • pp.1-15
    • /
    • 2015
  • Impacts of Sea Surface Temperature (SST) assimilation to the prediction of upper ocean temperature is investigated by using a regional ocean forecasting system, in which 3-dimensional optimal interpolation is applied. In the present study, Sea Surface Temperature and Sea Ice Analysis (OSTIA) dataset is adopted for the daily SST assimilation. This study mainly compares two experimental results with (Exp. DA) and without data assimilation (Exp. NoDA). When comparing both results with OSTIA SST data during Sept. 2011, Exp. NoDA shows Root Mean Square Error (RMSE) of about $1.5^{\circ}C$ at 24, 48, 72 forecast hour. On the other hand, Exp. DA yields the relatively lower RMSE of below $0.8^{\circ}C$ at all forecast hour. In particular, RMSE from Exp. DA reaches $0.57^{\circ}C$ at 24 forecast hour, indicating that the assimilation of daily SST (i.e., OSTIA) improves the performance in the early SST prediction. Furthermore, reduction ratio of RMSE in the Exp. DA reaches over 60% in the Yellow and East seas. In order to examine impacts in the shallow costal region, the SST measured by eight moored buoys around Korean peninsula is compared with both experiments. Exp. DA reveals reduction ratio of RMSE over 70% in all season except for summer, showing the contribution of OSTIA assimilation to the short-range prediction in the coastal region. In addition, the effect of SST assimilation in the upper ocean temperature is examined by the comparison with Argo data in the East Sea. The comparison shows that RMSE from Exp. DA is reduced by $1.5^{\circ}C$ up to 100 m depth in winter where vertical mixing is strong. Thus, SST assimilation is found to be efficient also in the upper ocean prediction. However, the temperature below the mixed layer in winter reveals larger difference in Exp. DA, implying that SST assimilation has still a limitation to the prediction of ocean interior.

Performance Evaluation of Monitoring System for Sargassum horneri Using GOCI-II: Focusing on the Results of Removing False Detection in the Yellow Sea and East China Sea (GOCI-II 기반 괭생이모자반 모니터링 시스템 성능 평가: 황해 및 동중국해 해역 오탐지 제거 결과를 중심으로)

  • Han-bit Lee;Ju-Eun Kim;Moon-Seon Kim;Dong-Su Kim;Seung-Hwan Min;Tae-Ho Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1615-1633
    • /
    • 2023
  • Sargassum horneri is one of the floating algae in the sea, which breeds in large quantities in the Yellow Sea and East China Sea and then flows into the coast of Republic of Korea, causing various problems such as destroying the environment and damaging fish farms. In order to effectively prevent damage and preserve the coastal environment, the development of Sargassum horneri detection algorithms using satellite-based remote sensing technology has been actively developed. However, incorrect detection information causes an increase in the moving distance of ships collecting Sargassum horneri and confusion in the response of related local governments or institutions,so it is very important to minimize false detections when producing Sargassum horneri spatial information. This study applied technology to automatically remove false detection results using the GOCI-II-based Sargassum horneri detection algorithm of the National Ocean Satellite Center (NOSC) of the Korea Hydrographic and Oceanography Agency (KHOA). Based on the results of analyzing the causes of major false detection results, it includes a process of removing linear and sporadic false detections and green algae that occurs in large quantities along the coast of China in spring and summer by considering them as false detections. The technology to automatically remove false detection was applied to the dates when Sargassum horneri occurred from February 24 to June 25, 2022. Visual assessment results were generated using mid-resolution satellite images, qualitative and quantitative evaluations were performed. Linear false detection results were completely removed, and most of the sporadic and green algae false detection results that affected the distribution were removed. Even after the automatic false detection removal process, it was possible to confirm the distribution area of Sargassum horneri compared to the visual assessment results, and the accuracy and precision calculated using the binary classification model averaged 97.73% and 95.4%, respectively. Recall value was very low at 29.03%, which is presumed to be due to the effect of Sargassum horneri movement due to the observation time discrepancy between GOCI-II and mid-resolution satellite images, differences in spatial resolution, location deviation by orthocorrection, and cloud masking. The results of this study's removal of false detections of Sargassum horneri can determine the spatial distribution status in near real-time, but there are limitations in accurately estimating biomass. Therefore, continuous research on upgrading the Sargassum horneri monitoring system must be conducted to use it as data for establishing future Sargassum horneri response plans.

Nomenclature of the Seas Around the Korean Peninsula Derived From Analyses of Papers in Two Representative Korean Ocean and Fisheries Science Journals: Present Status and Future (국내 대표 해양·수산 과학논문 분석을 통한 우리나라 주변 바다 이름표기에 대한 제언)

  • BYUN, DO-SEONG;CHOI, BYOUNG-JU
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.23 no.3
    • /
    • pp.125-151
    • /
    • 2018
  • We grouped the names attributed to the seas surrounding the Korean Peninsula in maps published in two major Korean ocean and fisheries science journals over the period from 1998 to 2017: the Journal of the Korean Society of Oceanography (The Sea) and the Korean Journal of Fisheries and Aquatic Science (KFAS). The names attributed to these seas in maps of journal paper broadly were classified into three groupings: (1) East Sea and Yellow Sea; (2) East Sea, Yellow Sea, and South Sea; or (3) East Sea, West Sea and South Sea. The name 'East Sea' was dominantly used for the waters between Korea and Japan. In contrast, the water between Korea and China has been mostly labelled as 'Yellow Sea' but sometimes labelled as 'West Sea'. The waters between the south coast of Korea and Kyushu, Japan were labelled as either 'Korea Strait' or 'South Sea'. This analysis on sea names in the maps of 'The Sea' and 'KFAS' reveals that domestic researchers frequently mix geographical and international names when referring to the waters surrounding the Korean Peninsula. These inconsistencies provide the motivation for the development of a basic unifying guideline for naming the seas surrounding the Korean Peninsula. With respect to this, we recommend the use of separate names for the marginal seas between continental landmasses and/or islands versus for the coastal waters surrounding Korea. For the marginal seas, the internationally recognized names are recommended to be used: East Sea; Yellow Sea; Korea Strait; and East China Sea. While for coastal seas, including Korea's territorial sea, the following geographical nomenclature is suggested to differentiate them from the marginal sea names: Coastal Sea off the East Coast of Korea (or the East Korea Coastal Zone), Coastal Sea off the South Coast of Korea (or the South Coastal Zone of Korea), and Coastal Sea off the West Coast of Korea (or the West Korea Coastal Zone). Further, for small or specific study areas, the local region names, district names, the sea names and the undersea feature names can be used on the maps.

Marine Environment and the Distribution of Phytoplankton Community in the Southwestern Sea of Korea in Summer 2005 (여름 한국서남해역의 해양환경과 식물플랑크톤 군집분포)

  • Yoon, Yang-Ho;Park, Jong-Sick;Park, Yeong-Gyun;Noh, Il-Hyeon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.3
    • /
    • pp.155-166
    • /
    • 2007
  • We carried out a study on the marine environment, such as water temperature, salinity, density and chlorophyll ${\alpha}$, and the distribution of phytoplankton community, such as species composition, dominant species and standing crops in the Southwestern Sea of Korea during early summer 2005. According to the analysis of a T-S diagram, three characteristics of water masses were identified. We classified them into Korean and Chinese coastal water, the cold water and the oceanic water. The first was characterized by high temperature and low salinity in the surface layer influenced by river run offs from China and Korea, the second by low temperature and salinity in bottom layer originated from the bottom cold water of the Yellow Sea, and the third by high temperature and high salinity influenced by Tsushima warm currents. The internal discontinuous layer among them was formed at the intermediate depth (about $10{\sim}20\;m$ layer). And the thermal front appeared in the central parts between Tsushima warm currents and Korean and Chinese coastal waters in the Southwestern Sea of Korea. Chlorophyll ${\alpha}$ concentration was high values in the Korean coastal waters and sub-surface layers. But It was low concentration in the Tsushima warm currents regions. The $Chl-{\alpha}$ maximum layers appeared in the sub-surface layer below thermocline. The phytoplankton community in the surface and stratified layers was composed of a total of 40 species belonging to 26 genera. Dominant species were 2 diatoms, Paralia sulcata, Skeletonema costatum and a dinoflagellate, Scripsiella trochoidea. Standing crops of phytoplankton in the surface layer were very low with cell density ranging from 5 to $3.8\;{\times}\;10^3\;cells/L$. Diatoms were controlled by the expanded low salinity coastal waters of the low salinity with high concentrations of nutrients. Otherwise phytoflagellates were dominant in the high temperature regions where the Tsushima warm currents approches the Southwestern Sea of Korea in early summer.

  • PDF