• Title/Summary/Keyword: 환원 효과

Search Result 1,192, Processing Time 0.032 seconds

Utilization of Various Electron Acceptors in Shewanella putrefaciens DK-l (Shewanella putrefaciens DK-1의 Fe(III) 환원 특성)

  • 조아영;이일규;전은형;안태영
    • Korean Journal of Microbiology
    • /
    • v.39 no.3
    • /
    • pp.175-180
    • /
    • 2003
  • Microbial Fe(III) reduction is an important factor for biogeochemical cycle in anaerobic environments, especially sediment of freshwater such as lakes, ponds and rivers. In addition, the Fe(III) reduction serves as a model for potential mechanisms for the oxidation of organic compounds and the reduction of toxic heavy metals, such as chrome or uranium. Shewanella putrefaciens DK-1 was a gram-negative, facultative anaerobic Fe(III) reducer and used ferric ion as a terminal electron acceptor for the oxidation of organic compounds to $CO_{2}$ or other oxidized metabolites. The ability of reducing activity and utilization of various electron acceptors and donors for S. putrefaciens DK-1 were investigated. S. putrefaciens DK-1 was capable of using a wide variety of electron acceptor, including $NO_{3}^{-}$, Fe(III), AQDS, and Mn(IV). However, its ability to utilize electron donors was limited. Lactate and formate were used as electron donors but acetate and toluene were not used. Fe(III) reduction of S. putrefaciens DK-l was inhibited by the presence of either $NO_{3}^{-}$ or $NO_{2}^{-}$. Further S. putrefaciens DK-1 used humic acid as an electron acceptor and humic acid was re-oxidized by nitrate. Environmental samples showing the Fe(III)-reducing activity were used to investigate effects of the limiting factors such as carbon, nitrogen and phosphorus on the Fe(III) reducing bacteria. The highest Fe (III) reducing activity was measured, when lactate as a carbon source and S. putrefaciens DK-1 as an Fe(III) reducer added in untreated sediment samples of Cheon-ho and Dae-ho reservoirs.

A Study on the Optimum Operating Conditions and Effects of Wastewater Characteristics in Electrochemical Nitrogen Removal Process (질소 제거를 위한 전기화학적 처리 공정의 최적 운전조건 및 폐수 성상에 따른 영향에 관한 연구)

  • Sim, Joo-Hyun;Kang, Se-Han;Seo, Hyung-Joon;Song, Su-Sung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.1
    • /
    • pp.29-34
    • /
    • 2009
  • This study was performed under four operational conditions for nitrogen removal in metal finishing wastewater. The conditions include electrode gap, reducing agent, the recycling of treated wastewater in 1st step and the simultaneous treatment of nitrate and other materials. Result showed that the removal efficiency of $NO_3{^-}-N$ was highest at the electrode gap of 10 mm. As the electrode gap was shorter than 10 mm, the removal efficiency of $NO_3{^-}-N$ decreased due to increasing in concentration polarization on electrode. And, in case that the electrode gap was longer than 10 mm, the removal efficiency of $NO_3{^-}-N$ increased with an increase in energy consumption. Because hydrogen ions are consumed when nitrate is reduced, reducing reaction of nitrate was effected more in acid solution. As 1.2 excess amount of zinc was injected, the removal efficiency of $NO_3{^-}-N$ increased due to increasing in amount of reaction with nitrate. As the effluent from 1st step in the reactor was recycled into the 1st step, the removal efficiency of $NO_3{^-}-N$ increased. Because the zinc were detached from the cathode and concentration-polarization was decreased due to formation of turbulence in the reactor. The presence of $NH_4{^+}-N$ did not affect the removal efficiency of $NO_3{^-}-N$ but the addition of heavy metal decreased the removal efficiency of $NO_3{^-}-N$. As chlorine is enough in wastewater, the simultaneous treatment of nitrate and ammonia nitrogen may be possible. The problem that heavy metal decrease the removal efficiency of $NO_3{^-}-N$ may be solved by increasing current density or using front step of electrochemical process for heavy metal removal.

Study on Determination of Design Factor of Bioreactor for Sulfate Reduction in Mine Drainage (광산배수 내 황산염 저감을 위한 생물반응기의 설계인자 도출 연구)

  • Kim, Kang-Ho;Kang, Chan-Ung;Kim, Sun-Joon;Kim, Tae-Heok;Ji, Won-Hyun;Jang, Hang-Seok;Park, Hyun-Sung
    • Journal of the Korean Society of Mineral and Energy Resources Engineers
    • /
    • v.55 no.6
    • /
    • pp.527-537
    • /
    • 2018
  • Column tests of a sulfate reducing bacteria (SRB) bioreactor were conducted to determine the design factors for sulfate-rich mine drainage. Various substrates were applied to the bioreactor, including cow manure and its mixture with a mushroom compost, with rice straw and limestone as subsidiary materials. This procedure provided a removal efficiency of up to 82% of the total sulfur with the mixture of cow manure (70%), mushroom compost (10%) and rice straw (20%), and higher efficiencies were observed after 2 days of retention time. In the downflow condition of the flow direction, oxygen supply and re-oxidation of the sulfates occurred, causing a decrease in sulfate removal efficiency. The addition of an inorganic sludge containing heavy metals, which was intended for production of metal-sulfides in the bioreactor, had a negative effect on the long-term operation owing to arsenic release and toxicity to the SRB. The results thus show that a bioreactor using a mixed substrate with cow manure and operating in the downflow direction could reduce sulfates and total dissolved sulfur content; this process confirms the applicability of the SRB bioreactor to sulfate-rich saline drainage.

Magnetite Dissolution by Copper Catalyzed Reductive Decontamination (촉매제로 구리이온을 이용한 환원성 제염에 의한 마그네타이트 용해)

  • Kim, Seonbyeong;Park, Sangyoon;Choi, Wangkyu;Won, Huijun;Park, Jungsun;Seo, Bumkyoung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.4
    • /
    • pp.421-429
    • /
    • 2018
  • Hydrazine based reductive dissolution applied on magnetite oxide was investigated. Dissolution of Fe(II) and Fe(III) from magnetite takes place either by protonation, surface complexation, or reduction. Solution containing hydrazine and sulfuric acid provides hydrogen to break bonds between Fe and oxygen by protonation and electrons for the reduction of insoluble Fe(III) to soluble Fe(II) in acidic solution of pH 3. In terms of dissolution rate, numerous transition metal ions were examined and Cu(II) ion was found to be the most effective to speed up the dissolution. During the cycle of Cu(I) ions to Cu(II) ions, the released electron promoted the reduction of Fe(III) and Cu(II) ions returned to Cu(I) ion due to the oxidation of hydrazine. In the experimental results, the addition of a very low amount of cupric ion (about 0.5 mM) to the solution increased the dissolution rate about 40% on average and up to 70% for certain specific conditions. It is confirmed that even though the coordination structure of copper ions with hydrazine is not clear, the $Cu(II)/H^+/N_2H_4$ system is acceptable regarding the dissolution performance as a decontamination reagent.

Studies on Quality Changes and Antioxidant Activity During the Fermentation of the Salt Fermented Whangseoke (황석어(Collichthys nireatus Jordan et starks) 젓갈의 숙성과정 중 품질변화와 항산화작용에 관한 연구)

  • Kim, Ji-Sang;Moon, Gap-Soon;Lee, Kyung-Hee;Lee, Young-Soon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.2
    • /
    • pp.171-176
    • /
    • 2006
  • The effect of storage temperature on the quality and antioxidative activity Whangseoke sauce was studied over a period of 240 days. Fermented Whangseoke with $25\%$ salt were stored at $25^{\circ}C$. The quality change and antioxidant activity of Whangseoke in linoleic acid emulsion was evaluated with various parameters including acids values, peroxide values, TBA values, reducing sugar, brown color intensity, electron donating ability and reducing power at various time intervals for 240 days of storage. In general, it was observed, in all sample, that peroxide values, brown color intensity, electron donating ability and reducing power gradually increased, while reducing sugar decreased during storage at $25^{\circ}C$. The antioxidative activities of fermented Whangseoke were determined on tile linoleic acid emulsion system. The results showed that Whangseoke had antioxidant activity. These results suggest that antioxidant activity of Whangseoke seemed to influence by Maillard reaction products during the storage periods.

Phytochemicals and Antioxidant Activity of Codonopsis lanceolata Leaves (더덕 잎의 파이토케미컬(phytochemicals)과 항산화 활성)

  • Kim, Gi Ho;Kim, Na Yeon;Kang, Shin-Ho;Lee, Hwa Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.5
    • /
    • pp.680-685
    • /
    • 2015
  • Phytochemicals in Codonopsis lanceolata leaves were saponins, triterpenes, tannins, and flavonoids, not alkaloids. The levels of total polyphenols and flavonoids in Codonopsis lanceolata leaves were measured to evaluate the antioxidant activity. C. lanceolata leaves showed strong 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity and potent reducing power. In addition, C. lanceolata leaf extracts inhibited production of nitric oxide (NO) in lipopolysaccharide (LPS)-activated RAW 264.7 cells. To examine active phytochemical for antioxidant activity, aglycone fraction of C. lanceolata leaves was analyzed by high performance liquid chromatography (HPLC). Luteolin was identified as a main component of aglycone fraction and showed potent antioxidant activity as determined by a DPPH radical scavenging assay and reducing power test. These results suggest that C. lanceolata leaves are a good source of antioxidants.

The Adsorption of COS with a Modified-Activated Carbon for Ultra-Cleanup of Coal Gas (석탄가스의 초정밀 정제를 위한 변형된 활성탄의 흡착특성 연구)

  • Lee, You-Jin;Park, No-Kuk;Lee, Tae-Jin
    • Clean Technology
    • /
    • v.13 no.4
    • /
    • pp.266-273
    • /
    • 2007
  • The adsorption properties of the activated carbon-based adsorbents were studied to remove COS emitted from $SO_2$ catalytic reduction process on the integrated gasification combined cycle (IGCC) system in this work. Transition metal supported catalysts and mixed metal oxide catalysts were used for the $SO_2$ catalytic reduction. The mechanism of COS produced from the $SO_2$ reduction and the COS concentration s according to the reaction temperature were investigated. In this study, an activated carbon and a modified activated carbon doped with KOH were used to remove the very low concentration of COS effectively. The adsorption rate and the breakthrough time of COS were measured by a thermo gravity analyzer (TGA, Cahn Balance) and a fixed bed flow reactor equipped with GC-pulsed flammable photometric detector (PFPD), respectively. It was confirmed that the COS breakthrough time of the activated carbon doped with KOH was longer than that of an activated carbon. In conclusion, the modified-activated carbon having a high surface area showed a high adsorption rate of COS produced from the $SO_2$ reduction.

  • PDF

Studies on Varietal Differences in Growth, Nodulation and Nitrogen Fixation in Soybeans, Glycine max (L.) Merrill I. Changes in nitrogen fixation activity and dry weight of plant organs during reproductive stage (콩의 생육, 근류형성, 질소고정에 있어서 품종간 차이 I. 등숙단계별 각 기관 건물중 및 질소고정활성의 경시적 변화)

  • Eun-Hui Hong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.32 no.3
    • /
    • pp.323-329
    • /
    • 1987
  • Five soybean varieties of two early maturing Karikei73 and SS 79168, and three late maturing Tohoku76, Baegunkong and Jangbaegkong were used and evaluated in the study. Of the varieties examined, Karikei73 was characterized by the delayed leaf senescence. The varieties were planted in the pots of 1/3500 a filled with volcanic ash soil at the experimental fields of the National Institute of Agrobiological Resources in Japan. Major agronomic characteristics including the activity of nitrogen fixation for root nodules during the grain filling period were measured. Measurements during the stages were followed by the stage of development descriptions for soybeans made by Fehr and Carviness (1977). The acetylene reducing activity (ARA) per dry weight of root nodule measured using acetylene reduction assays was the highest at R4-R4.5 with decreasing trends thereafter for the early matruing varieties, while it continuously increased up to R6 but decreased rapidly thereafter for the late maturing varieties. The dry weights of root nodules and all parts of the host plant at each stage checked were greater in the late maturing varieties being the same in ARA per pot.

  • PDF

The Effects of SO2 and NH3 on the N2O Reduction with CO over MMO Catalyst (MMO 촉매와 CO 환원제에 의한 N2O 분해에서 SO2 및 NH3 영향 연구)

  • Chang, Kil Sang;You, Kyung-Chang
    • Applied Chemistry for Engineering
    • /
    • v.20 no.6
    • /
    • pp.653-657
    • /
    • 2009
  • Nitrous oxide is a typical greenhouse gas which is produced from various organic or fossil fuel combustion processes as well as chemicals producing plants. $N_2O$ has a global worming potential of 310 times that of $CO_2$ on per molecule basis, and also acts as an ozone depleting material in the stratosphere. However, its removal is not easy for its chemical stability characteristics. Most SCR processes with several effective reducing agents generally require the operation temperature higher than $450^{\circ}C$, and the catalytic conversion becomes decreased significantly when NOx is present in the stream. Present experiments have been performed to obtain basic design data of actual application concerning the effects of $SO_2$ and $NH_3$ on the interim and long term activities of $N_2O$ reduction with CO over the mixed metal oxide (MMO) catalyst derived from a hydrotalcite-like compound precursor. The MMO catalysts used in the experiments, have shown prominent activities displaying full conversions of $N_2O$ near $200^{\circ}C$ when CO is introduced. The presence of $SO_2$ is considered to show no critical behavior as can be met in the $NH_3$ SCR DeNOx systems and the effect of $NH_3$ is considered to play as mere an impurity to share the active sites of the catalysts.

Antioxidant Effect of Histidine-Containing Low-Molecular-Weight Peptides Seperated from Tuna Meat (다랑어 육으로부터 분리한 Histidine 함유 저분자 Peptide의 항산화 효과)

  • Kim, Hong Kil;Song, Ho-Su
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.5
    • /
    • pp.513-520
    • /
    • 2020
  • Here, we evaluated the functional properties of histidine-containing low-molecular-weight (LMW) peptides obtained from tuna waste meats. As with histidine-related components composed of histidine, 1-methyl histidine and anserine, histidine-containing LMW peptides exhibited high α,α-diphenyl-β-picrylhydrazyl (DPPH) radical scavenging effect in a dose-dependent manner. Among the histidine-related dipeptides, anserine exhibited the highest reducing power followed by carnosine. By comparison with dipeptides, tuna extracts also showed similar reducing power and the activity was in a dose-dependent manner. In addition, the antioxidant activities of tuna extracts such as DPPH radical scavenging effect, reducing power, superoxide dismutase activities, and peroxide value of linoleic acid were affected by the various extraction methods.