DOI QR코드

DOI QR Code

Antioxidant Effect of Histidine-Containing Low-Molecular-Weight Peptides Seperated from Tuna Meat

다랑어 육으로부터 분리한 Histidine 함유 저분자 Peptide의 항산화 효과

  • Kim, Hong Kil (Ministry of Food and Drug Safety Food Safety Pusan Regional Office and Food and Drug Safety) ;
  • Song, Ho-Su (Division of Culinary Arts, Youngsan University)
  • 김홍길 (식품의약품안전처 부산지방식품의약품안전청) ;
  • 송호수 (영산대학교 조리예술학부)
  • Received : 2020.10.06
  • Accepted : 2020.10.08
  • Published : 2020.10.30

Abstract

Here, we evaluated the functional properties of histidine-containing low-molecular-weight (LMW) peptides obtained from tuna waste meats. As with histidine-related components composed of histidine, 1-methyl histidine and anserine, histidine-containing LMW peptides exhibited high α,α-diphenyl-β-picrylhydrazyl (DPPH) radical scavenging effect in a dose-dependent manner. Among the histidine-related dipeptides, anserine exhibited the highest reducing power followed by carnosine. By comparison with dipeptides, tuna extracts also showed similar reducing power and the activity was in a dose-dependent manner. In addition, the antioxidant activities of tuna extracts such as DPPH radical scavenging effect, reducing power, superoxide dismutase activities, and peroxide value of linoleic acid were affected by the various extraction methods.

다랑어로부터 추출한 histidine 함유 저분자 peptide의 항산화능을 평가한 결과, histidine, 1-methylhistidine, carnosine과 anserine을 포함한 histidine 관련 화합물과 다랑어에서 추출한 histidine 함유 저분자 peptide는 DPPH 라디칼 소거능력을 지녔고, 농도가 증가함에 따라 효과 또한 증가하였다. 다랑어 추출물은 2차 이온교환 처리물이 carnosine과 anserine의 dipeptide와 유사한 결과를 나타냈으며, 가열처리와 한외여과를 병행한 경우와 이온교환과 한외여과 처리를 한 동결물의 경우 ascorbic acid와 유사한 라디칼 소거능을 나타냈다. Histidine 함유 dipeptide 중에서 anserine이 가장 높은 환원력을 나타내었으며, carnosine은 두 번째로 강한 환원력을 나타내었다. Dipeptide와 비교하여 황다랑어, 눈다랑어 추출물이 높은 환원력을 나타내었으며, 농도가 증가할수록 환원력이 증가하였다. 다랑어 추출물 원육에서의 SOD 유사활성은 약했으나, 가열처리와 한외여과를 병행하였을 때, 황다랑어 눈다랑어 추출물이 농도별로 4.0-19.4%, 5.7-20.6%로 나타났으며, 이온교환과 한외여과를 병행하였을 때, 8.3-27.9%, 5.4-25.0%, 2차 이온교환 처리를 하였을 때, 8.2-29.5%, 8.6-32.1%로 활성이 증가하였다. Linoleic acid를 기질로 하여 저장기간에 따른 자동산화의 중간생성물인 과산화물의 변화를 측정한 결과 CM-cellulose의 처리 동결건조물은 ascorbic와 유사하게 지질산화능이 높은 것으로 나타났다. 인체 내의 pH 변화를 고려하여 pH 1.2, pH 3.0, pH 4.2로 조절하여 아질산염의 소거능을 살펴보았을 때, 황다랑어 추출물의 경우 25.14%, 15.09%, 13.71%, 눈다랑어 추출물은 27.44%, 18,28%, 18.09%로 pH 1.2, pH 3.0에서 carnosine과 anserine보다 낮지만 pH 4.2에서 histidine 보다 높은 소거능을 보였다.

Keywords

References

  1. Kim, Y.G., 2004. Antioxidant. Ryomoongak press, Seoul, Korea, pp. 1-3.
  2. Ito, N., Fukushima, S., Hasegawa, A., Shibata, M., Ogiso. T., Carcinogenicity of bytylated hydroxy antisole in 344 rats. J. Natl. Cancel Inst., 70, 343 (1983).
  3. Branen, A.L., Toxicological and anisole and butylated hydroxy anisole and butylated hydroxytoluene. JAOCS, 52, 59 (1975). https://doi.org/10.1007/BF02901825
  4. Burton, G.W., Antioxidant action of cartenoids. J. Nutri., 119, 110-116 (1989).
  5. Block, G., Langseth, L., Antioxidant vitamins and disease prevention. Food Technol., 48, 80-85 (1994).
  6. Larson, R.A., The antioxidants of higher plants. Phycochemistry, 27, 969 (1988). https://doi.org/10.1016/0031-9422(88)80254-1
  7. Adelson, R., Saul, R.L., Ames, B.N., Oxidative damage to DNA: Relation to species metabolic and life span. Proc. Natl. Acad. Sci. USA., 85, 2706-2708 (1988). https://doi.org/10.1073/pnas.85.8.2706
  8. Song, H.S., The effect of carnosine extracted from eels Anguilla japonica on oxidative DNA damage induced by hydrogen peroxide and the DNA repair capacity of human leukocytes, J. Korean Fish Soc., 50(5), 520-526 (2017).
  9. Song, H.S., Lee K,T., Park, S.M., Kang O.J., Inhibitory effects of eel (Anguilla japonica) extracted carnosine on protein glycation, J. Korean Fish Soc., 42(2), 104-108 (2009).
  10. Thornalley, P.J., Advanced glycation and the development of diabetic complications. Unifying the involvement of glucose, methylglyoxal and oxidative stress. Endocrinol. Metab., 3, 149-166 (1999).
  11. Huang, S.C., Kuo, J.C.C., Concentration and antioxidative activity of anserine and carnosine in poultry meat extracts treated with demineralization and papain. Proc. Natl. Sci. Counc. Repub China part B Life Sci., 24, 193-201 (2000).
  12. Min, H.O., Song, H.S., Antioxidant effect of anserine extracted from salmon (Oncorhynchus keta), J. Food Hyg. Saf., 34(4), 396-403 (2019). https://doi.org/10.13103/JFHS.2019.34.4.396
  13. Bussayarat, M., Intarapiche,. K.O., Heat and ultrafiltration extraction of broiler meat carnosine and its antioxidant activity. Meat Sci., 71, 364-374 (2005). https://doi.org/10.1016/j.meatsci.2005.04.017
  14. Chan, K.M., Decker, E., Means, W.J., Extraction and activity of carnosine a natually occuring antioxidant in beef muscle. J. Food Sci., 58, 1-7 (1993). https://doi.org/10.1111/j.1365-2621.1993.tb03199.x
  15. Shimada, K., Fujikawa. K., Yahara, K., Nakamura, T., Antioxidative properties of xanthan on the antioxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem., 40, 945-948 (1992). https://doi.org/10.1021/jf00018a005
  16. Lee, K.T., Song, H.S., Park, S.M., Antioxidant activities of carnosine, extracted from eel (Anguilla japonica) J. Korean Fish Soc., 40, 193-200 (2007).
  17. Marklund, S., Marklund, G., Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem., 47, 469-474 (1974). https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  18. Kim, W.S., 2003. Antioxidant activity and safety evaluation of carnosine, anserine and homocarnosine isolated from spent hen. PhD thesis. Duksung women's university of Korea, pp. 1-93.
  19. Gray, J.I., Dugan, L.R., Inhibition of N-nitrosamine formation in model system. J. Food Sci., 40, 981-984 (1975). https://doi.org/10.1111/j.1365-2621.1975.tb02248.x
  20. Wu, H.C., Shiau, C.Y., Chen, H.M., Chiou, T.K., Antioxidant activities of carnosine, anserine, some free amino acids and their combination. J. Food Drug Anal., 11, 148-153 (2003).
  21. Halliwell, B., Free radicals, reactive oxygen spices, and human disease: a critical evaluation with special reference to atherosclerosis. Br. J. Exp. Pathol., 70, 737-757 (1989).
  22. Packer, L., Colman, C., 1999. The antioxidant miracle: Your complete plan for total health age healing. Johm Wiley and Sons Inc. USA, pp. 1-274.
  23. Choi, S.Y., Kwon, H.Y., Kwon, O.B., Kang, J.H., Hydrogen peroxide-mediated Cu,Zn-superoxide dismutase fragmentation: protection by carnosine, homocarnosine and anserine. Biochimica. et Biophysica. Acta., 1472, 651-657 (1999). https://doi.org/10.1016/S0304-4165(99)00189-0
  24. Kang, J.H., Kim, K.S., Choi, S.Y,. Kwon., H.Y., Won, M.H., Kang, T.C., Protective effects of carnosine, homocarnosine and against peroxyl radical-mediated Cu, Zn-superoxide dismutase modification. Bioche. et Biophysica. Acta., 1570, 89- 96 (2002). https://doi.org/10.1016/S0304-4165(02)00158-7
  25. Boldyrev, A., Abe, H., Stvolinsky, S., Tyulina O., Effects of carnosine and related compounds on generation of free oxygen species: a comparative study. Biochem. Physiol., 112(3), 481-485 (1995). https://doi.org/10.1016/0305-0491(95)00084-4
  26. Oh, K.S., Lee, E.H., Kim, M.C., Lee, K.H., Antioxidative activities of skipjack meat extract. Bull. Kor. Fish. Soc., 20(5), 441-446 (1987).
  27. Koizumi, C., Ohshima,, T., Wada., S., Inhibitory effect of bigeye tuna meat extract on sodium chlorite-catalyzed oxidation of linoleate. Bull. of Jap. Soc. of Sci. Fish., 50(2), 275-280 (1983). https://doi.org/10.2331/suisan.50.275