• Title/Summary/Keyword: 환경콘크리트

Search Result 1,647, Processing Time 0.029 seconds

Effective Direction of Future Concrete Education (미래의 바람직한 콘크리트 교육 방향)

  • 박승범;김성수
    • Magazine of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.32-36
    • /
    • 2002
  • 지식, 정보 및 문화의 시대인 21세기는 변화하는 환경에 얼마나 빨리 적응하고, 나아가 변화를 유도하느냐에 따라 기술인의 성공여부가 좌우될 것이다. 건설 시장에서도 WTO의 출범으로 무한 경쟁 시대를 맞이하고 있으며, 세계 경제의 통합이 점점 가속화되는 지금, 우리나라의 건설산업과 기술인이 생존하고 발전하기 위해서는 미래에 대한 예측과 대비, 그리고 세계화(globalization) 등 환경 변화에 대한 빠른 적응이 무엇보다 중요하다고 하겠다.(중략)

Durability Comparison of Precast Segment Lining and Cast-in-place Concrete Lining (프리캐스트 세그먼트 라이닝과 현장 타설 콘크리트 라이닝의 내구성 비교)

  • Gyuphil Lee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.12
    • /
    • pp.13-18
    • /
    • 2023
  • Cast-in-place concrete lining is commonly used in tunnel lining, but cast-in-place concrete lining has problems with construction and quality control. Precast segment lining is being used to solve these problems. In general, precast segment lining is known to have improved durability and easy maintenance such as rehabilitation of structures. This study compared the durability of 22 tunnel linings constructed with precast segments or cast-in-place reinforced concrete.

Cathodic Protection Characteristics and Effective Length of Protection Current of Concrete Pile using Zn-mesh Sacrificial Anode (아연 메쉬 희생양극을 이용한 콘크리트 파일의 음극방식 특성 및 방식전류 유효거리)

  • Kim, Ki-Joon;Jeong, Jin-A;Lee, Woo-Cheol
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.773-776
    • /
    • 2008
  • The corrosion of steel in concrete is significant in marine environment. Marine bridges are readily deteriorated due to the exposure to marine environment. Salt damage is one of the most detrimental causes to concrete bridges and port structures. Especially, the splash and tidal zones around water line are comparatively important in terms of safety and life-time point of view. During the last several decades, cathodic protection (cp) has been commonly accepted as an effective technique for corrosion control in concrete structures. Zn-mesh sacrificial anode has been recently developed and started to apply to the bridge column cp in marine condition. The detailed parameters regarding Zn-mesh cp technique, however, have not well understood. This study is to investigate how much Zn-mesh cp influences along the concrete column at elevated temperature. About 100cm column specimens with eight of 10cm segment rebars have been used to measure the variation of cp potential with the distance from Zn-mesh anode at both 10$^{\circ}$C and 40$^{\circ}$C in natural seawater. The cp potential change and current diminishment along the column specimens have been discussed for the optimum design of cp by Zn-mesh sacrificial anode

  • PDF

A Study on the Strength Properties of High-Strength concrete under Various curing conditions (각종 양생방법에 따른 고강도 콘크리트의 강도발현 특성에 관한 연구)

  • Cho, Hyun-Dae;Jaung, Jae-Dong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.965-968
    • /
    • 2008
  • The KS F 2403 method used on domestic sites for checking the compressive strength of a structure, sets the compressive strength of the concrete used in structural specimens as the compressive strength of testing specimens. Under this regulation, the curing method used for testing the specimens must be the standard ponding curing method (20$\pm$2$^{\circ}$C). However, because in-placed concrete is exposed to open air and cured under the seasonal temperature changes, the compressive strength of a real structure is different from the tested compressive strength. (Therefore,) This thesis first identifies the distinct characteristics of the strength development by applying the curing method listed under the KS and used for testing specimens on compressive strength tests; the atmospheric curing method, the sealed curing method, and the structural specimen core strength testing methods used for the in-sites quality checks including reckoning of the compressive strength of the structural specimens and form-demolding period; and the curing method suggested in this research, which sets the internal conditions of the structural specimens as the conditions of the applied curing method. Then, the thesis suggests the specimen curing method that most closely reenacts the compressive strength of the concrete used on the structural specimens

  • PDF

Application of Macrocell Sensor System for Monitoring of Steel Corrosion in Concrete Structure Exposed to Marine Environment (해양 콘크리트구조물의 철근부식 모니터링을 위한 매크로셀 센서 시스템의 적용)

  • Lee, Seung-Tae;Moon, Dae-Joong;Kim, Wan-Jong;Moon, Jae-Heum;Kim, Hak-Soo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.4
    • /
    • pp.241-247
    • /
    • 2010
  • Corrosion of steel embedded in concrete is one of the foremost factors that affect the durability of concrete structures in marine environments. This paper presents an application technique of anode-ladder-system to evaluate corrosion behaviours of marine concrete structure. In order to investigate the behaviours quantitatively, the measurement of potential and current was performed on the concrete elements subjected to the penetration and diffusion of chloride ions. The main variable was the heights from seawater level; namely 3.7, 6.0 and 8.2 m. As a result of the monitoring, it was found that the corrosion characteristics differently behaved with the increasing height. Additionally, through migration test, the relationship between compressive strength of concrete and diffusivity of chloride ions was observed. It is suggested, ultimately, that in order to reduce or mitigate steel corrosion, both appropriate concrete cover depth and high-quality of concrete in early ages should be done.

A Study on the Basic Properties of Concrete and Low Heat-Blended Cement with Bottom Ash (바텀애시를 이용한 저발열 혼합시멘트 및 콘크리트의 기초물성에 관한 연구)

  • Kim, Won-Ki;Kim, Hoon-Sang;Kim, Hong-Joo;Lee, Won-Jun;Shin, Jin-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.685-688
    • /
    • 2008
  • This study has examined the effect of bottom ash(BA) on the properties of low heat-blended cement(LHC) and concrete. A number of binders were prepared by the replacement of LHC with BA in range of 5$^{\sim}$20wt%. The results showed that the final setting time of cement paste were delayed when the BA replaced part of the cement. However, The heat of hydration increased narrowly with adding BA in a early hydration period. The results also showed the inclusion of BA at replacement levels of 5$^{\sim}$10wt% resulted in an increase in compressive strength of the specimens compared with that of the control concrete and improved a resistance of concrete against the sulfate and chlorine ion.

  • PDF

Cathodic Protection of Reinforced Concrete Slab with Zn-Mesh in Marine Environment (해양환경 중 Zn-mesh를 적용한 콘크리트 슬랩의 음극방식 특성)

  • Kim, Ki-Joon;Jeong, Jin-A;Lee, Woo-Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1065-1068
    • /
    • 2008
  • Marine bridges are readily deteriorated due to the exposure to marine environment. The concrete deterioration occurred by corrosion of steel in concrete is mainly relevant to chloride in seawater. Chloride ions penetrate through porous concrete, and then reach to the reinforcing steel, and finally corroded them. The corrosion by-products(rusts) increase the volume as much as 6 to 10 times of origin steel. this creates expanding pressure and tensile stress, which cause the structures cracking and spalling. Sometimes the rebar corrosion is accelerated, and then collapsed catastrophically. In order to prevent corrosion damage, it is important to understand well regarding the reason of concrete corrosion, the quantification of its damage, and protection method/system to stop or to mitigate the corrosion. In this study, slab specimens were fabricated to evaluate the effect of cathodic protection which was simulated to marine bridges, and/or port structures. Zn-mesh sacrificial anode has been applied as a chathodic protection system and accelerated test conditions, i.e. temperature and salt concentration have been used in this study.

  • PDF

Compressive Strength and Fire Resistance Performance of High Strength Concrete with Recycled Fiber Power from Fiber-Reinforced Plastics (재활용 FRP 미분말을 혼입한 고강도 콘크리트의 압축강도 및 내화성능)

  • Lee, Seung Hee;Park, Jong Won;Yoon, Koo Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.1
    • /
    • pp.46-51
    • /
    • 2014
  • Increasing of waste FRP (fiber reinforced plastics) has caused environmental problems. Recently, the technology of making fibers from waste FRP, which can be used to reinforce the concrete, was developed and the reinforced concretes were tested to study the structural performance. The purpose of this study is to investigate the effect of the powder, obtained together with F-fiber from the waste FRP, on the compressive strength and the fire resistance performance as in the high strength concrete. Strength tests show that the use of recycled FRP powder does not reduce the compressive strength of high strength concrete if the volume fraction of FRP powder is less than 0.7%. Electric furnace test results also show that the use of recycled FRP powder may increase the fire resistance performance of high strength concrete significantly.

Evaluation of Mechanical Properties of Early-age Concrete Containing Electric Arc Furnace Oxidizing Slag (전기로 산화슬래그를 혼입한 초기재령 콘크리트의 역학적 특성 평가)

  • Kwon, Seung-Jun;Hwang, Sang-Hyeon;Lim, Hee-Seob
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.2
    • /
    • pp.93-100
    • /
    • 2019
  • In this study, the mechanical properties of early-age concrete were evaluated by mixing the electric arc furnace oxidizing slag fine aggregate with 30% and 50% replacement ratio. Slump test, air content test and unit volume weight test were performed for fresh concrete, and compressive strength test and chloride penetration experiments were carried out in hardened concrete. The compressive strength increased up to 7 days of curing age with increasing replacement ratio of the electric furnace oxidizing slag, but the strength decreased to 90% level of OPC concrete at 28 days of age. Regarding the result of chloride penetration test, no significant differences from OPC concrete were evaluated, which shows a feasibility of application to concrete aggregate.