• Title/Summary/Keyword: 환경콘크리트

Search Result 1,647, Processing Time 0.027 seconds

An Experimental Study on the Properties of Compressive Strength of Fly Ash Replaced Antiwash out Underwater Concrete Considering Marine Environment (해양환경을 고려한 플라이애쉬${\cdot}$수중 불분리 콘크리트의 압축강도에 관한 실험적 연구)

  • Kwon, Joong-Hyen;Jung, Hee-Hyo;Moon, Je-Kil
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.2
    • /
    • pp.231-239
    • /
    • 1999
  • When the concrete is cast at the sea, there are lots of restrictions in the working process being different from in land, and the concrete is suffered from the physical and chemical action in terms of marine environment. The compressive strength was measured after antiwash out underwater concrete mixed with fly ash had been cast and cured in order to produce the endurable high performance concrete, and then its characteristic was discussed by comparing one cured in air with in fresh water, and the effect of fly ash usage under the properly controled sea water temperature of $15{\pm}3^{\circ}C$ was also covered. The present work showed that the proper usage of fly ash was obtained at the condition of around 10% of substituted binder weight under the structure required the early age strength, and at the condition of over 40% if considering its durability and economy.

A Study on Characteristics of Flexural Behavior of High-strength Polymer Concrete Beams Using Recycled PET (PET 재활용 고강도 폴리머 콘크리트보의 휨거동에 관한 연구)

  • Cho Byung-Wan;Park Jong-Hwa;Park Seung-Kook;Bea Sung-Wan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.483-486
    • /
    • 2005
  • The polymer concrete is drawing a strong interest as high-performance materials in the construction industry. Resins using recycled PET offer the possibility of a lower source cost of materials for making useful polymer concrete products. Also the recycling of PET in polymer concrete would help solve some of the solid waste problems posed by plastics and save energy. Polymer concrete beams using unsaturated polyester resins based on recycled polyethylene terephthalate (PET) plastic waste were used in our study for grasping its structural behavior of static and fatigue. As a result of static test, Compression stress distribution of Polymer concrete indicates linear behavior such as triangles. Although polymer concrete is high strength materials, its ductility capacity is excellent. From the fatigue test results, There was almost no difference on flexural characteristics between before and after fatigue loading. Therefore, recycled PET polymer concrete remains excellent structural ability after fatigue loading.

  • PDF

Characterization of Thermal Properties of Concrte and Temperature Prediction Model (콘크리트재료의 열특성 및 수화열 해석)

  • 양성철
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.2
    • /
    • pp.121-132
    • /
    • 1997
  • The thermal behavior of' concrete can be ch;lracterized from a knowledge of concrete ternperatu1.e at early ages, environmental conditions, and cement hydration in the mixture. 'l'o account for thost. interactions, a computer model was developed for prwlicting the temperature pr.ol'ile in hnrdcning c o n c r c t ~ st.r~icture in terms of material and tmvironmcntal factors. The cerncnt hydration cha~.acteristics such as the activating energy, total heat 1ihei.atr.d. anti th\ulcorner degree of' hydration. can represent the internal heat gc,neration. In this study. th(> activating c1ncrgy and the tlcgree of' hydration curve were determined well fmm the rnortn~. compressive strength tests while total amount of heat liberated was determined by tht> isothermal calorimctcr method. The main purpose of' this study is to correlate measured tt>mperaturr distributions in a concrete st1,ucture during thc hardening process with the ~ c s u l t s computed f'ro~n theoretical considrl.ations. Using twodimensional heat transfer model, first. the importance of several parameters will be identified by a parametric analysis. Then, the tcmpcmture distribution of thc cylindrical concrete specimen in the laboratory was mensuwti and compared with that yielded by thc theoretical considel.ations.

Strengthening Performance of RC Beams Exposed to Freezing and Thawing Cycles after Strengthening in Shear with CFRP Sheet (CFRP 쉬트로 전단보강후 동결융해에 노출된 철근콘크리트 보의 보강성능)

  • Yun, Hyun-Do;Kim, Sun-Woo;Kim, Yun-Su;Lee, Min-Jung;Seo, Soo-Yeon;Choi, Ki-Bong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.161-164
    • /
    • 2008
  • In recent years, carbon fiber-reinforced polymer (CFRP) has been widely used for repairing and/or strengthening structural elements in concrete. Not enough test data, however, are available to predict the long-term performance of the repaired and improved structures exposed to weathering. The objective of this research is to study the effect of freeze-thaw cycling on the behavior of reinforced concrete (RC) beams strengthened in shear with carbon fiber sheet. Six small-scale RC beams (100mm${\times]$100mm${\times]$400mm) were strengthened with CFRP in shear, subjected to up to 400 cycles freeze-thawing from -17${\sim}4^{\circ}C$, and tested to failure in four-point bending. Test result, there was no significant damage to carbon fiber sheet strengthened concrete beams had been suffered 30 cycles of freeze-thawing, and more over 60 cycles of freezing-thawing brought about a reduction in resistance of only 25% of the initial level.

  • PDF

A study on $CO_2$ absorption of concrete during life cycle of building (건물 생애주기 동안 콘크리트의 이산화탄소 흡수에 관한 연구)

  • Lee, Sang-Hyun;Lee, Han-Seoung;Song, Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.577-580
    • /
    • 2008
  • Concrete absorbs $CO_2$ in the air because of carbonation. according to rising concern for lasting earth environment efforts of reducing greenhouse gas, especially co2, are occurred whole industry throughout the world. In this paper selected one building and computed amount of production and absorbtion of co2 during its lifecycle at concrete. In computing amount of absorbtion of co2 considered amount of absorbtion according to the area of concrete changing senarioes of servicelife(40,60,80 years) and deconstruct preiod(60,40,20 years). As a result, size of concrete and maintenance period of disused concrete work increasement of $CO_2$ as main factors. We came to the conclusion that maintenance period is more important than recycle of unused concrete as a method for reducing environmental load in architectural industry.

  • PDF

Study on The Heat Transfer and Mechanical Modeling of Fiber-Mixed High Strength Concrete (섬유혼입 고강도 콘크리트의 열전달 및 역학적 거동 해석모델에 대한 연구)

  • Shin, Young-Sub;Han, Tong-Seok;Youm, Kwang-Soo;Jeon, Hyun-Kyu
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.2
    • /
    • pp.45-52
    • /
    • 2011
  • To improve fire-resistance of a high strength concrete against spalling under elevated temperature, fibers can be mixed to provide flow paths of evaporated water to the surface of concrete when heated. In this study, the experiment of a column under fire and mechanical loads is conducted and the material model for predicting temperature of reinforcement steel bar and mechanical behavior of fiber-mixed high strength concrete is suggested. The material model in previous studies is modified by incorporating physical behavior of internal concrete and thermal characteristics of concrete at the elevated temperature. Thermo-mechanical analysis of the fiber-mixed high strength concrete column is conducted using the calibrated material model. The performance of the proposed material model is confirmed by comparing thermo-mechanical analysis results with the experiment of a column under fire and mechanical loads.

플로팅 건축용 콘크리트 구조물의 철근 겹이음 거동

  • Yang, In-Hwan;Sin, Jae-Hyeok;Kim, Gyeong-Cheol
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2015.07a
    • /
    • pp.213-215
    • /
    • 2015
  • 플로팅 건축용 콘크리트 구조물은 부식환경에 노출되어 매립된 철근의 부식에 따른 구조물의 내구성능에 문제가 발생하게 된다. 철근 부식에 의한 내구성이 저하되는 문제의 여러 효과적인 해결방법 중 하나로 철근 코팅 기법이 있으며, 철근의 용융아연도금시 표면에 용융아연층이 형성되어 철근을 보호하는 장점이 있으나 콘크리트와의 부착 성능에 대한 연구는 미비한 실정이다. 따라서, 본 연구에서는 플로팅 건축용 콘크리트 구조물의 철근 겹이음에 따른 거동 특성연구를 수행하였다.

  • PDF

장기 노출된 음료캔 콘크리트의 전기적 특성

  • 김찬오;손기상;이홍주
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2002.11a
    • /
    • pp.276-280
    • /
    • 2002
  • 환경적ㆍ산업적으로 크게 문제되는 폐기물인 Steel 음료캔과 Aluminum 음료캔을 사용하여 기존의 콘크리트와 다른 다양한 관점에서 음료캔 발열콘크리트의 강도와 전기적 특성에 관하여 실험했다. 본 연구에서는 2002년 3월 8일부터 2002년 10월 9일 까지 장기간에 걸쳐서 계절이 바뀌는 자연현상에서 음료캔 발열콘크리트의 특성파악을 위한 전기ㆍ전도 특성과 축열효과 관점에서 저항률 변화를 계속 실험, 연구하였다.

  • PDF

철녹 콘크리트의 전기적 특성

  • 김찬오;손기상
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2001.11a
    • /
    • pp.375-380
    • /
    • 2001
  • 철녹 콘크리트는 국내굴지의 제조업체에서 제품생산과정에서 생성된 폐기물 처리로 큰 문제가 될 수 있는 즉 처리비용이 드는 환경 적 지정폐기물로서 콘크리트에 배합하여 성능개선을 할 수 있는 방안을 찾는 것은 큰 의의가 있는 것이라 사료된다. 여기서 전기적 특성은 철의 본 성질을 기대할 수 없는 것으로 폐기물로서 사용할 수 없는 것이기 때문이다. 본 연구에서는 일반콘크리트와 비교해서 전기적으로 특성이 개선될 수 있음을 기대하고 이에 대한 실험으로 사실확인을 하고 적용하는 요소에 따라 전기적 특성을 증진하는 배합요소를 찾고자 한다.(중략)

  • PDF

Strength Analysis of 3D Concrete Printed Mortar Prism Samples (3D 콘크리트 프린팅된 모르타르 프리즘 시편의 강도 분석)

  • Kim, Sung-Jo;Bang, Gun-Woong;Han, Tong-Seok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.4
    • /
    • pp.227-233
    • /
    • 2022
  • The 3D-printing technique is used for manufacturing objects by adding multiple layers, and it is relatively easy to manufacture objects with complex shapes. The 3D concrete printing technique, which incorporates 3D printing into the construction industry, does not use a formwork when placing concrete, and it requires less workload and labor, so economical construction is possible. However, 3D-printed concrete is expected to have a lower strength than that of molded concrete. In this study, the properties of 3D-printed concrete were analyzed. To fabricate the 3D-printed concrete samples, the extrusion path and shape of the samples were designed with Ultimaker Cura. Based on this, G-codes were generated to control the 3D printer. The optimal concrete mixing proportion was selected considering such factors as extrudability and buildability. Molded samples with the same dimensions were also fabricated for comparative analysis. The properties of each sample were measured through a three-point bending test and uniaxial compression test, and a comparative analysis was performed.