• Title/Summary/Keyword: 환경콘크리트

Search Result 1,647, Processing Time 0.028 seconds

Analysis on Characteristics of Spectral Library to River Floating Debris (하천 부유쓰레기에 대한 분광라이브러리 특성 분석)

  • Lee, Jun-Ho;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.3
    • /
    • pp.623-632
    • /
    • 2018
  • The object of this study is the effective utilizations of river environment management technology in the area of river reservoir water by using the technique to detect locations, and to develop algorithms on floating debris. In the floating debris detection areas(The section between the stanks of Dalsung and Gangjung-Goryeong), spectral reflections were measured on floating debris around the river: vegetation(grassland, trees), artifact(concrete, structure etc.), stream water(fresh water, turbid water, algal bloom), and simultaneously characteristics of spectral library were analyzed to river floating debris, respectively.

Environmental Stress Response of Calcite Forming Bacteria Isolated from Concrete Pavement (콘크리트 포장도로에서 분리한 탄산칼슘형성미생물의 다양한 환경 스트레스반응)

  • Han, Sang-Hyun;Kim, Sung-Keun;Kang, Chang-Ho;Park, Joo-Young;Jeong, Jin-Hoon;So, Jae-Seong
    • KSBB Journal
    • /
    • v.27 no.4
    • /
    • pp.268-272
    • /
    • 2012
  • Microbially induced calcite precipitation (MICP) has been explored for protection and consolidation of construction materials such as concrete. In this study, we isolated 54 calcite forming bacteria from concrete pavement and selected 5 isolates which showed high specific urease activity. Also response of the 5 strains against various environmental stresses was examined. BC 4 and BC 5 showed 35% and 26% viability at heat stress ($50^{\circ}C$), respectively. BC 1 and BC 4 maintained 60.4% and 70.4% viability upon osmotic stress (1 M NaCl), respectively. Among the 5 isolates BC 4 had the highest viability upon alkaline stress (pH 10).

The Recycling of Waste Asphalt Concrete Mixfure Using a Movable Asphalt Recycling Machine (이동형 아스팔트 재생기를 이용한 페아스팔트 콘크리트 혼합물의 재활용)

  • 박승범;조청휘;김정환
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.1 no.2
    • /
    • pp.75-83
    • /
    • 2000
  • Recently, the quantities of waste asphalt concrete at construction sites have much increased greatly. but maintaining a filling-up and final disposal place is a difficult problem. Therefore, we are faced with a worsening environmental problem brought about present illegal measures. So, safety treatment and recycling of construction waste is a very important question in the Preservation of environmental and natural resources In this study we performed fundamental investigation to manufacture the base recycling asphalt mixture by movable asphalt recycling machine. It contained waste asphalt concrete and recycling agent and its quality was equal to virgin asphalt concrete.

  • PDF

An Experimental Study on the Strength and Behavior of Reinforced Concrete Columns Containing Shells Substituted a Fine Aggregate (패각류를 잔골재 대체재로 사용한 철근콘크리트 기둥의 내력 및 거동에 관한 실험적 연구)

  • Koo, Hae-Shik
    • KIEAE Journal
    • /
    • v.8 no.3
    • /
    • pp.69-76
    • /
    • 2008
  • This is an experimental study on the maximum load value and structural behavior of reinforced concrete columns containing shells as a substitute fine aggregate of concrete, through making reinforced concrete test columns with shells. In this study, the main factors consist of the grain sizes and the percentage of substitution of shells to fine aggregate in two kinds of water cement ratio. The results of the study showed as followed. The maximum load value decreased with increased the rate of substitution about shells and as the grain size of shells became smaller, the load values of them were somewhat changed higher but it is important that we must consider absorption rate of shells sufficiently. If we have a proper water cement ratio in column productions containing the shells, we can meet the requirement of the percentage of substitution until 30%. The deflection and deformation properties of reinforced concrete columns with shells represented typical curves like that of normal reinforced concrete. But as the failture types, they are able to make some change without being out of the fundamental graph forms. After the analyzing structural behaviors and the properties of reinforced concrete test columns containing shells, the most excellent grain size of shells represented 3.0mm and less with taking uniformly, and the percentage of practicable substitution of them to fine aggregate was about 30%.

A Study of Spraying Curing Compound for Concrete Pavement Considering Environmental Condition in Tunnel (터널내 환경을 고려한 콘크리트 포장의 양생제 살포기준 연구)

  • Ryu, SungWoo;Kwon, OhSun;Song, GeoRuemSoo;Lee, MinKyung;Cho, Yoon-Ho
    • International Journal of Highway Engineering
    • /
    • v.16 no.3
    • /
    • pp.51-57
    • /
    • 2014
  • PURPOSES : This study is to suggest tunnel length to spray curing compound, based on the field tests. METHODS : At first field test, length from the entrance of tunnel to wet wall was checked by visual survey. The second and third test, various sensors were installed in concrete or in tunnel, such as RH sensor, temperature sensor, portable weather station and etc.. And also, test for bleeding and retaining water of concrete were conducted to evaluate environmental effect on concrete pavement. RESULTS : The result of the field experiment for tunnel length to spray curing compound indicates that length changes depending on tunnel length, season, and location. Environmental condition of a short tunnel was not much different between location near entrance and at center of tunnel. However, in case of a medium and long tunnel, effect of outside environmental condition decreased, when location moved into tunnel center of it. CONCLUSIONS : From the testing results, it can be proposed that optimum tunnel length to spray curing compound is 60m for a medium and long tunnel, and whole length for a short tunnel.

Sporulation of Lysinibacillus sphaericus WJ-8 Isolated from Concrete Pavement and Response to Environmental Stresses (콘크리트 포장에서 분리한 Lysinibacillus sphaericus WJ-8의 포자 형성과 환경 스트레스 반응)

  • Han, Sang-Hyun;Kang, Chang-Ho;Shin, Yu Jin;Yeom, Woo Sung;Jeong, Jin Hoon;So, Jae-Seong
    • KSBB Journal
    • /
    • v.29 no.3
    • /
    • pp.188-192
    • /
    • 2014
  • Calcite forming bacteria (CFB) have been received increasing attention as a novel and environmental friendly strategy for the healing of concrete crack. Among the CFB, spore forming bacteria were proposed to overcome concrete condition (high pH, hydration heat, deicer). In this study, Lysinibaclillus sphaericus WJ-8 (WJ-8) isolated from concrete pavement was characterized. The WJ-8 was able to precipitate calcite at 10 mg/mL. When observed by scanning electron microscopy, WJ-8 showed spore formation and maximum spore yield was approximately 97.9%. Also response of spores against various environment stresses was examined. Approximately 83~97% of spores maintained their survivability at each three conditions ($60^{\circ}C$, 3 M NaCl and pH 12).

Development of Long-Span Steel-Precast Composite Beam for Green Apartment Building (장스팬이 가능한 친환경 공동주택용 철골 프리캐스트 합성보 개발)

  • Yoon, Tae-Ho;Hong, Won-Kee;Park, Seon-Chee;Yune, Dai-Young
    • KIEAE Journal
    • /
    • v.11 no.1
    • /
    • pp.9-14
    • /
    • 2011
  • Currently, the multi-residential apartments used in Korea are mostly bearing wall apartments which don't satisfy consumers for the lack of architectural plan flexibility. And due to remodelling-incompatible, bearing wall apartments have to be reconstructed. It is, thus, necessary to develop multi-residential apartments utilizing composite beam that can replace the conventional bearing wall-type apartment buildings. Composite beams proposed in this paper ensure modification of space and quality control, while the floor heights are maintained at the same floor height as in bearing wall structures. This study analyzes the experimental behavior of composite beams with proper combination of structural steel, reinforced concrete, and precast concrete. By comparing with the theoretical analysis and experimental results, the accuracy of flexural moment capacity and neutral axis was evaluated. The experiments were performed by two simply-supported specimens using loading and unloading. When the analysis results were compared with the experimental results, the flexural moment capacity of the composite beam was shown with an error of approximately -0.5 to 0.1% at the maximum load limit state.

An Experimental Study on the Sustainable Performance of Concrete through the Quantitative Analysis of Carbon Dioxide Absorption (이산화탄소 흡수량 정량분석을 통한 콘크리트의 친환경성능에 관한 실험적 연구)

  • Choi, Jin Young;Lee, Han Seung;Kyung, Je Woon;Lee, Sang Hyeon;Yang, Nae Won
    • KIEAE Journal
    • /
    • v.7 no.4
    • /
    • pp.113-118
    • /
    • 2007
  • From the construction material the cement and the concrete which will reach to 90% are used to construction. But the cement occurrence (from the whole industry 4.4% of carbon dioxide exhaust quantity) makes the carbon dioxide of manufacture hour and anti- the recognition which is an environment industry. The cement absorbs the carbon dioxide during life period of the life time. It calls carbonation. In this study in order to evaluate the carbon dioxide absorption of the cement test produced the mortar specimens which it follows in the W/C. And carbonatable material of mortar specimens (calcium hydroxide) the quantitly it measured, reference study it led and absorption of carbon dioxide quantity it produced. Finally two result comparisons leads and it is a fundamental study which does the test evaluation possibility and a propriety investigation of carbon dioxide absorption quantity in objective.

Integrity Estimation of The RC Members Damaged by Corrosion of Main Rebar (철근이 부식된 철근콘크리트 구조물의 건전도 평가기술)

  • Kwon, Dae Hong;Yoo, Suk Hyeong;Noh, Sam Young
    • KIEAE Journal
    • /
    • v.7 no.4
    • /
    • pp.141-146
    • /
    • 2007
  • It is necessary to guarantee the safety, serviceability and durability of reinforced concrete structures over their service life. However, concrete structures represent a decrease in their durability due to the effects of external environments according to the passage of time, and such degradation in durability can cause structural degradation in materials. In concrete structures, some degradations in durability increase the corrosion of embedded rebars and also decrease the structural performance of materials. Thus, the structural condition assessment of RC materials damaged by corrosion of rebars becomes an important factor that judges needs to apply restoration. In order to detect the damage of reinforced concrete structures, a visual inspection, a nondestructive evaluation method(NDE) and a specific loading test have been employed. However, obscurities for visual inspection and inaccessible members raise difficulty in evaluating structure condition. For these reasons, detection of location and quantification of the damage in structures via structural response have been one of the very important topics in system identification research. The main objective of this project is to develope a methodologies for the damage identification via static responses of the members damaged by durability. Six reinforced concrete beams with variables of corrosion position and corrosion width were fabricated and the damage detections of corroded RC beams were performed by the optimization and the conjugate beam methods using static deflection. In results it is proved that the conjugate beam method could predict the damage of RC members practically.

A Study on Controlled Blasting Design in Construction Field (건설현장에서의 제조 발파 설계에 관한 고찰)

  • 이화창
    • Explosives and Blasting
    • /
    • v.14 no.1
    • /
    • pp.49-63
    • /
    • 1996
  • Blasting is a work that destruct an object by use of explosive. Its use covers a wid range, and it is applicable to blast the rocks, minerals, coal, steel and concrete structures, bridges, etc. To execute the blast plan most effectively, the properties of the object and the explosives should be well understood, and all the other conditions must ve incorporated in its design and plan. A safe blasting pattern and procedure should be selected considering the envirinmental effects and dther conditions. At the same time, a protective protective pricedures should be utilized to prevent the safety hazards such as the excessive blast vubration, air pressure, and the flying fragments. This study reviews the controlled blasting techniques in these regards.

  • PDF