Browse > Article
http://dx.doi.org/10.7841/ksbbj.2012.27.4.268

Environmental Stress Response of Calcite Forming Bacteria Isolated from Concrete Pavement  

Han, Sang-Hyun (Department of Biological Engineering, Inha University)
Kim, Sung-Keun (Department of Biological Engineering, Inha University)
Kang, Chang-Ho (Department of Biological Engineering, Inha University)
Park, Joo-Young (Department of Civil Engineering, Inha University)
Jeong, Jin-Hoon (Department of Civil Engineering, Inha University)
So, Jae-Seong (Department of Biological Engineering, Inha University)
Publication Information
KSBB Journal / v.27, no.4, 2012 , pp. 268-272 More about this Journal
Abstract
Microbially induced calcite precipitation (MICP) has been explored for protection and consolidation of construction materials such as concrete. In this study, we isolated 54 calcite forming bacteria from concrete pavement and selected 5 isolates which showed high specific urease activity. Also response of the 5 strains against various environmental stresses was examined. BC 4 and BC 5 showed 35% and 26% viability at heat stress ($50^{\circ}C$), respectively. BC 1 and BC 4 maintained 60.4% and 70.4% viability upon osmotic stress (1 M NaCl), respectively. Among the 5 isolates BC 4 had the highest viability upon alkaline stress (pH 10).
Keywords
Bio-concrete; Sporosarcina pasteurii KCTC3558; MICP; Specific urease activity;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Korea Institute of Construction Technology. (2010) Construction Brief. pp. 2-3. In: K.T.Koh. Concrete Technology Development for Green Growth, Korea.
2 Chunxiang, Q., W. Jianyun, W. Ruixing, and C. Liang (2009) Corrosion protection of cement-based building materials by surface deposition of $CaCO_3$ by Bacillus pasteurii. Mater. Sci. Eng. C. 29: 1273-1280.   DOI
3 Bang, S. S. and V. Ramakrishnan (2001) Microbiologicallyenhanced Crack Remediation (MECR). pp. 3-13. In: Proceedings of the International Symposium on Industrial Application of Microbial Genomes. June 20-22, Daegu, Korea.
4 Van Tittelboom, K., N. De Belie, W. De Muynck, and W. Verstraete (2010). Use of bacteria to repair cracks in concrete. Cem. Concr. Res. 40: 157-166.   DOI
5 Cunningham, A. B., R. Gerlach, L. Spangler, and A. C. Mitchell (2009) Microbially enhanced geologic containment of sequestered supercritical $CO_2$. Energy Procedia 1: 3245-3252.   DOI
6 Vilardell, J., A. Aguado, L. Agullo, and R. Gettu (1998) Estimation of the modulus of elasticity for dam concrete. Cem. Concr. Res. 28: 93-101.   DOI
7 Topcu, I. B. and S. Sengel (2004) Propertiesof concretes produced with waste concrete aggregate. Cem. Concr. Res. 34: 1307-312.   DOI   ScienceOn
8 De Muynck, W., K. Cox, N. De Belie, and W. Verstraete (2008) Bacterial carbonate precipitation as an alternative surface treatment for concrete. Constr. Build. Mater. 22: 875-885.   DOI
9 De Muynck, W., D. Debrouwer, N. De Belie, and W. Verstraete (2008) Bacterial carbonate precipitation improves the durability of cementitious materials. Cem. Concr. Res. 38: 1005-1014.   DOI
10 Jonkers, H. M., A. Thijssen, G. Muyzer, O. Copuroglu, and E. Schlangen (2010) Application of bacteria as self-healing agent for the development of sustainable concrete. Ecol. Eng. 36: 230-235.   DOI
11 De Muynck, W., N. De Belie, and W. Verstraete (2010) Microbial carbonate precipitation in construction materials: a review. Ecol. Eng. 36: 118-136.   DOI
12 Lee, Y. G., S. C. Lee, and C. W. Park (2006) A recent concrete engineering, Goomibook, Seoul.
13 Dupraz, S., B. Menez, P. Gouze, R. Leprovost, P. Benezeth, O. S. Pokrovsky, and F. Guyot (2009) Experimental approach of $CO_2$ biomineralization in deep saline aquifers. Chem. Geol. 265: 54-62.   DOI
14 Stocks-Fisher, S., J. K. Galinat, and S. S. Bang (1999) Microbiological precipitation of $CaCO_3$. Soil Biol. Biochem. 31: 1563-1571.   DOI
15 Bachmeier K. L., A. E. Williams, J. R. Warmington, S. S. Bang (2002) Urease activity in microbiologically-induced calcite precipitation. J. Biotechnol. 93:171-181.   DOI
16 Boer, J. L., S. Quiroz-Valenzuela, K. L. Anderson, and R. P. Hausinger (2010) Mutagenesis of klebsiella aerogenes ureg to probe nickel binding and interactions with other urease-related proteins. Biochemistry. 49: 5859-5869.   DOI
17 Achal. V., A. Mukherjee, P. C. Basu, and M. Sudhakara Reddy (2009) Strain improvement of Sporosarcina pasteurii for enhanced urease and calcite production. J. Ind. Microbiol. Biotechnol. 36: 981-988.   DOI
18 Park, S. J., N. Y. Lee, W. J. Kim, and S. Y. Ghim (2010) Application of bacteria isolated from Dok-do for improving compressive strength and crack remediation of cement-sand mortar. Kor. J. Microbiol. Biotechnol. 38: 216-221.   과학기술학회마을
19 Natarajan, K. R. (1995) Kinetic study of the enzyme urease from Dolichos biflorus. J. Chem. Educ. 72: 556-557.   DOI
20 Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.   DOI   ScienceOn
21 Hammes, F., N. Boon, J. De Villiers, W. Verstraete, and S. D. Siciliano (2003) Strain-specific ureolytic microbial calcium carbonate precipitation. Appl. Environ. Microbiol. 69: 4901-4909.   DOI
22 Nicholson, W. L., N. Munakata, G. Horneck, H. J. Melosh, and P. Setlow (2000) Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol Mol. Biol. 64: 548-572.   DOI   ScienceOn
23 Ramachandran, S. K., V. Ramakrishnan, and S. S. Bang (2001) Remediation of concrete using micro-organisms. ACI Mater. J. 98: 3-9.
24 Soltmann, U., J. Raff, and S. Selenska-pobell (2003) Biosorption of heavy metals by sol-gel immobilized Bacillus sphaericus cells, spores and s-layers. J. Sol-gel Sci. Technl. 26: 1209-1212.   DOI