• Title/Summary/Keyword: 확률적 유사도

Search Result 410, Processing Time 0.03 seconds

사용자 의도 정보를 사용한 웹문서 분류

  • Jang, Yeong-Cheol
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2008.10b
    • /
    • pp.292-297
    • /
    • 2008
  • 복잡한 시맨틱을 포함한 웹 문서를 정확히 범주화하고 이 과정을 자동화하기 위해서는 인간의 지식체계를 수용할 수 있는 표준화, 지능화, 자동화된 문서표현 및 분류기술이 필요하다. 이를 위해 키워드 빈도수, 문서내 키워드들의 관련성, 시소러스의 활용, 확률기법 적용 등에 사용자의도(intention) 정보를 활용한 범주화와 조정 프로세스를 도입하였다. 웹 문서 분류과정에서 시소러스 등을 사용하는 지식베이스 문서분류와 비 감독 학습을 하는 사전 지식체계(a priori)가 없는 유사성 문서분류 방법에 의도정보를 사용할 수 있도록 기반체계를 설계하였고 다시 이 두 방법의 차이는 Hybrid조정프로세스에서 조정하였다. 본 연구에서 설계된 HDCI(Hybrid Document Classification with Intention) 모델은 위의 웹 문서 분류과정과 이를 제어 및 보조하는 사용자 의도 분석과정으로 구성되어 있다. 의도분석과정에 키워드와 함께 제공된 사용자 의도는 도메인 지식(domain Knowledge)을 이용하여 의도간 계층트리(intention hierarchy tree)를 구성하고 이는 문서 분류시 제약(constraint) 또는 가이드의 역할로 사용자 의도 프로파일(profile) 또는 문서 특성 대표 키워드를 추출하게 된다. HDCI는 문서간 유사성에 근거한 상향식(bottom-up)의 확률적인 접근에서 통제 및 안내의 역할을 수행하고 지식베이스(시소러스) 접근 방식에서 다양성에 한계가 있는 키워들 간 관계설정의 정확도를 높인다.

  • PDF

A Study on the Application of Cost Risk Exposure methods by the Probabilistic Evaluation on the Construction Projects (확률적 평가에 의한 건설공사 비용 위험도 측정의 적용성에 관한 연구)

  • Cho Jea-Ho;Chun Jae-Youl
    • Korean Journal of Construction Engineering and Management
    • /
    • v.1 no.1 s.1
    • /
    • pp.63-71
    • /
    • 2000
  • The paper considers two non-deterministic methods of analysing the risk exposure in a cost estimate The fist method(referred to as the 'conventional statistical' method) analyses cost data directly, to describe a probability distribution for total cost. The second method(referred to as the 'Monte Carlo simulation' method) interprets cost data directly, to generate a probability distribution for total costs from the descriptions of elemental cost distribution. The common practice of allowing for risk through an all-embracing contingency sum or percentage addition is challenged. Rather than excluding conventional, non-deterministic methods, they are here presented as possibly the only of effective foundation on which to risk management in cost estimating.

  • PDF

Rational Estimation of Dam Low-flow Frequency Inflow (가뭄대응력 평가를 위한 합리적 댐 유입량 산정 연구)

  • Kim, Ji-Heun;Lee, Jae-Hwang;Kim, Yeong-O
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.178-178
    • /
    • 2021
  • 최근 들어 기후변화로 인한 극심한 가뭄 피해가 한반도에 발생하고 있다. 가뭄 상황에 대비하여 댐을 안정적으로 운영하기 위해서는 갈수빈도 유입량에 대한 분석이 필수적이다. 갈수빈도해석의 경우, 홍수빈도해석과 유사하게 확률밀도함수의 극값에 대한 확률값을 산정하며, 확률 분포형의 역함수에 비초과확률을 대입하여 산정한다. 그러나 홍수와 달리 가뭄은 지속기간이 긴 특성 탓에 자기상관을 고려해야하며, 댐 및 저수지 등 대규모 시설물의 경우 일반적인 하천과 달리 저류효과로 인해 누적 유량에 대한 고려가 필요하다. 이에 K-water는 자체 제작한 누가차분법 및 Disaggregation 두 가지 방법을 채택하여 실무에서 사용해왔다. 그러나 누가차분법을 사용할 경우, 빈도유입량이 지나치게 크게 산정되는 문제가 있으며, Disaggregation 방법을 사용하는 경우, 특정 빈도 이상의 극한가뭄에서 유입량의 차이가 유의미하지 않아 산정된 빈도유입량과 최근 발생한 극심한 가뭄의 실측유입량간 큰 차이가 발생하고 있다. 따라서 본 연구에서는 자기상관을 고려한 선형회귀모형에 근거하여 빈도유입량을 배분하는 방법을 제안한다. 또한, 앞서 서술한 네 가지 빈도유입량 방법(월빈도분석, 누가차분법, K-water Disaggregation, 자기상관 선형회귀모형)에 대한 수식적 비교를 수행하며, 국내 댐 유역에 적용 및 평가를 통해 자료 특성에 따른 적절한 빈도유입량 산정방식에 대한 기준을 제안한다. 본 연구를 통해 가뭄특성을 고려한 합리적인 댐 유입량을 산정함으로써 보다 유연한 수자원시설물의 가뭄대응이 이루어질 것으로 기대된다.

  • PDF

Efficient Continuous Vocabulary Clustering Modeling for Tying Model Recognition Performance Improvement (공유모델 인식 성능 향상을 위한 효율적인 연속 어휘 군집화 모델링)

  • Ahn, Chan-Shik;Oh, Sang-Yeob
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.1
    • /
    • pp.177-183
    • /
    • 2010
  • In continuous vocabulary recognition system by statistical method vocabulary recognition to be performed using probability distribution it also modeling using phoneme clustering for based sample probability parameter presume. When vocabulary search that low recognition rate problem happened in express vocabulary result from presumed probability parameter by not defined phoneme and insert phoneme and it has it's bad points of gaussian model the accuracy unsecure for one clustering modeling. To improve suggested probability distribution mixed gaussian model to optimized for based resemble Euclidean and Bhattacharyya distance measurement method mixed clustering modeling that system modeling for be searching phoneme probability model in clustered model. System performance as a result of represent vocabulary dependence recognition rate of 98.63%, vocabulary independence recognition rate of 97.91%.

Document Clustering Methods using Hierarchy of Document Contents (문서 내용의 계층화를 이용한 문서 비교 방법)

  • Hwang, Myung-Gwon;Bae, Yong-Geun;Kim, Pan-Koo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.12
    • /
    • pp.2335-2342
    • /
    • 2006
  • The current web is accumulating abundant information. In particular, text based documents are a type used very easily and frequently by human. So, numerous researches are progressed to retrieve the text documents using many methods, such as probability, statistics, vector similarity, Bayesian, and so on. These researches however, could not consider both subject and semantic of documents. So, to overcome the previous problems, we propose the document similarity method for semantic retrieval of document users want. This is the core method of document clustering. This method firstly, expresses a hierarchy semantically of document content ut gives the important hierarchy domain of document to weight. With this, we could measure the similarity between documents using both the domain weight and concepts coincidence in the domain hierarchies.

경제이론에 기반한 게임 보안성 강화 정책 사례 연구

  • Yoo, Changsok
    • Review of KIISC
    • /
    • v.26 no.3
    • /
    • pp.45-49
    • /
    • 2016
  • 게임은 독자적인 하나의 가상 세계를 구성하며, 이에 따라 게임을 서비스하는 기업은 별도의 사법체계에 가까운 정보보호 및 보안 체계 및 인력을 유지하는 경우도 많다. 여기에서는 이러한 기업이 가지고 있는 권한을 활용하여 정보보호를 강화하는 방법에 대해 경제이론에 기반하여 사례를 간략하게 분석하였다. 가상 세계에서의 불법적 활동은 개인의 효용극대화라는 경제이론으로도 설명이 가능하며, 이를 볼 때 불법적 활동의 감소는 기대되는 수익의 감소 및 처벌 규모 및 발각확률 상승으로 인한 기대되는 비용의 증가를 통해 정책적으로 대처가 가능하다. 이를 위해 다양한 기술적/보안조직 등에 대한 연구 및 방법론들이 개발되어 있지만, 이를 통하지 않더라도 게임 내 규칙을 변경하거나, 정책적 방향을 통해서도 유사한 효과를 얻을 수 있다. 여기에서는 간략하게 (1) 불법적 이득을 감소시키는 정책 (2) 불법적 활동의 발각확률을 올리는 정책 (3) 불법적 활동에 대한 처벌에 대한 정책이라는 세 가지 측면에서 검토하였으며, 그동안 게임사에서 시도되었고 효과적이었다고 인지되는 여러 사례를 소개하고자 하였다.

확률론적 공간 자료 통합 모델을 이용한 산사태 취약성 분석

  • Park, No-Uk;Ji, Gwang-Hun;Gwon, Byeong-Du
    • 한국지구과학회:학술대회논문집
    • /
    • 2005.02a
    • /
    • pp.254-260
    • /
    • 2005
  • 이 논문에서는 산사태 취약성 분석을 목적으로 확률론적 공간통합의 틀 안에서 범주형 자료와 연속형 자료를 효율적으로 처리할 수 있는 비모수적 우도비 추정 모델과 모수적 예측적 판별 분석 모델을 적용하였다. 적용 모델의 비교를 위해 1998년 여름철 산사태로 많은 피해를 입은 경기도 장흥 지역과 충청북도 보은 지역을 대상으로 사례연구를 수행하였다. 장흥 지역에서는 두 모델이 유사한 예측 능력을 나타내었으나, 보은 지역에서는 모수적 예측적 판별 분석 모델이 상대적으로 높은 예측 능력을 나타내었다. 결론적으로 제안한 두 모델은 산사태 취약성 분석을 위한 연속형 자료 표현에 효율적으로 적용될 수 있으며, 두 모델이 개별적인 연속형 자료 표현의 특성을 가지고 있기 때문에 다른 사례 연구를 통한 검증 작업이 병행되어야 할 것으로 생각된다.

  • PDF

Face Tracking and Recognition on the arbitrary person using Nonliner Manifolds (비선형적 매니폴드를 이용한 임의 얼굴에 대한 얼굴 추적 및 인식)

  • Ju, Myung-Ho;Kang, Hang-Bong
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.342-347
    • /
    • 2008
  • Face tracking and recognition are difficult problems because the face is a non-rigid object. If the system tries to track or recognize the unknown face continuously, it can be more hard problems. In this paper, we propose the method to track and to recognize the face of the unknown person on video sequences using linear combination of nonlinear manifold models that is constructed in the system. The arbitrary input face has different similarities with different persons in system according to its shape or pose. Do we can approximate the new nonlinear manifold model for the input face by estimating the similarities with other faces statistically. The approximated model is updated at each frame for the input face. Our experimental results show that the proposed method is efficient to track and recognize for the arbitrary person.

  • PDF

Key-word Recognition System using Signification Analysis and Morphological Analysis (의미 분석과 형태소 분석을 이용한 핵심어 인식 시스템)

  • Ahn, Chan-Shik;Oh, Sang-Yeob
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.11
    • /
    • pp.1586-1593
    • /
    • 2010
  • Vocabulary recognition error correction method has probabilistic pattern matting and dynamic pattern matting. In it's a sentences to based on key-word by semantic analysis. Therefore it has problem with key-word not semantic analysis for morphological changes shape. Recognition rate improve of vocabulary unrecognized reduced this paper is propose. In syllable restoration algorithm find out semantic of a phoneme recognized by a phoneme semantic analysis process. Using to sentences restoration that morphological analysis and morphological analysis. Find out error correction rate using phoneme likelihood and confidence for system parse. When vocabulary recognition perform error correction for error proved vocabulary. system performance comparison as a result of recognition improve represent 2.0% by method using error pattern learning and error pattern matting, vocabulary mean pattern base on method.

A Measure of Semantic Similarity and its Application in User-Word Intelligent Network (U-WIN을 이용한 의미 유사도 측정과 활용)

  • Im, Ji-Hui;Bae, Young-Jun;Choe, Ho-Seop;Ock, Cheol-Young
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.06c
    • /
    • pp.189-193
    • /
    • 2007
  • 개념 간의 유사도 측정 방법은 의미망에서의 두 개념의 최단 경로의 수 노드의 깊이 관계의 종류 등의 정보를 이용하는 링크(Link) 기반 방법, 대용량의 말뭉치에서의 개념의 발생빈도를 확률로 계산한 정보량(Information Content) 기반 방법, 관련 단어들의 공기정보를 활용한 의미(Gloss) 기반 방법이 있으며, 이미 국외에서는 WordNet과 같은 의미적 언어자원을 활용하여 많은 연구가 진행되고 있다. 그러나 국내에서는 아직 한국어 의미망을 바탕으로 한 개념간의 유사성 측정 방법이나 이를 활용하는 방법에 대한 연구가 미흡하다. 본 논문에서는 이를 바탕으로 링크 타입 노드의 깊이 최단경로 정보량 등의 요소를 이용한 의미 유사도 측정방법을 제안하고 이를 활용하여 명사-용언간의 연계 정보를 확보함으로써, 효율적으로 명사-용언간의 네트워크를 구축하도록 한다.

  • PDF