• Title/Summary/Keyword: 확률인자

Search Result 457, Processing Time 0.028 seconds

Bayesian Method for the Multiple Test of an Autoregressive Parameter in Stationary AR(L) Model (AR(1)모형에서 자기회귀계수의 다중검정을 위한 베이지안방법)

  • 김경숙;손영숙
    • The Korean Journal of Applied Statistics
    • /
    • v.16 no.1
    • /
    • pp.141-150
    • /
    • 2003
  • This paper presents the multiple testing method of an autoregressive parameter in stationary AR(1) model using the usual Bayes factor. As prior distributions of parameters in each model, uniform prior and noninformative improper priors are assumed. Posterior probabilities through the usual Bayes factors are used for the model selection. Finally, to check whether these theoretical results are correct, simulated data and real data are analyzed.

Effect and uncertainty analysis according to input components and their applicable probability distributions of the Modified Surface Water Supply Index (Modified Surface Water Supply Index의 입력인자와 적용 확률분포에 따른 영향과 불확실성 분석)

  • Jang, Suk Hwan;Lee, Jae-Kyoung;Oh, Ji Hwan;Jo, Joon Won
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.7
    • /
    • pp.475-488
    • /
    • 2017
  • To simulate accurate drought, a drought index is needed to reflect the hydrometeorological phenomenon. Several studies have been conducted in Korea using the Modified Surface Water Supply Index (MSWSI) to simulate hydrological drought. This study analyzed the limitations of MSWSI and quantified the uncertainties of MSWSI. The influence of hydrometeorological components selected as the MSWSI components was analyzed. Although the previous MSWSI dealt with only one observation for each input component such as streamflow, ground water level, precipitation, and dam inflow, this study included dam storage level and dam release as suitable characteristics of the sub-basins, and used the areal-average precipitation obtained from several observations. From the MSWSI simulations of 2001 and 2006 drought events, MSWSI of this study successfully simulated drought because MSWSI of this study followed the trend of observing the hydrometeorological data and then the accuracy of the drought simulation results was affected by the selection of the input component on the MSWSI. The influence of the selection of the probability distributions to input components on the MSWSI was analyzed, including various criteria: the Gumbel and Generalized Extreme Value (GEV) distributions for precipitation data; normal and Gumbel distributions for streamflow data; 2-parameter log-normal and Gumbel distributions for dam inflow, storage level, and release discharge data; and 3-parameter log-normal distribution for groundwater. Then, the maximum 36 MSWSIs were calculated for each sub-basin, and the ranges of MSWSI differed significantly according to the selection of probability distributions. Therefore, it was confirmed that the MSWSI results may differ depending on the probability distribution. The uncertainty occurred due to the selection of MSWSI input components and the probability distributions were quantified using the maximum entropy. The uncertainty thus increased as the number of input components increased and the uncertainty of MSWSI also increased with the application of probability distributions of input components during the flood season.

Socio-eoconomic impacts on human-modified hydrological drought using Copula Bayesian networks : a case study of Chungju Dam basin (Copula Bayesian networks를 활용한 수문학적 가뭄에 대한 사회경제적 인자들의 영향 평가 : 충주댐 유역을 중심으로)

  • Shin, Ji Yae;Son, Ho Jun;Kwon, Hyun-Han;Kim, Tae-Woong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.343-343
    • /
    • 2021
  • 최근 국내외적으로 발생되는 대규모의 가뭄에 대하여 여러 과학자들은 자연적인 현상의 가뭄이 아니라 인간의 영향으로 변형된 유역 상황으로 증발산과 토양수분량 그리고 하천유량 등이 자연적인 상태와 다르게 변화되면서 지속된 가뭄으로 평가하고 있다. 우리나라는 대부분의 지역에서 댐과 저류지를 중심으로 수자원 관리가 이루어지고 있으며, 자연적인 수문과정에 의한 유출에 따른 수문학적 가뭄과는 차이가 존재한다. 사회경제적 인자(인구밀도, 농업 및 산업 경제규모 등)는 댐 및 저수지의 용수사용에 큰 영향을 미치며, 저류지의 저류량을 활용하여 판단한 인위적 용수사용이 고려된 수문학적 가뭄(인위적 수문학적 가뭄)과 자연 상태로의 수문학적 가뭄의 특성은 크게 다를 수 있다. 하지만, 사회경제적 인자들이 수문학적 가뭄에 미치는 영향에 대하여 비교한 연구는 상관성 분석을 토대로한 연구가 대부분이다. 본 연구에서는 인자들이 인위적 수문학적 가뭄에 미치는 정도를 정량적으로 비교하기 위하여 베이지안 네크워크 모형을 활용하여 사회경제적 인자와 인위적 수문학적 가뭄과의 관계를 분석하였다. 해당 관계를 바탕으로 코플라 함수를 활용함으로써 베이지안 네트워크 내의 결합확률을 산정하였다. 다양한 사회경제적 인자들에 중에서 인과지도를 바탕으로 활용 가능한 인자로 농업용수 사용량, 생공용수 사용량 자료를 구축하였으며, 기상학적 가뭄지수를 추가적으로 고려하여 한강유역 충주댐 유역에 적용하였다. 그 결과 기상학적 가뭄과 농업용수 사용량과 생공용수 사용량은 값이 증가함에 따라 인위적 수문학적 가뭄의 발생확률이 증가하였다. 사회경제적 인자 중에서는 생공용수 사용량(0.39~0.49)이 전반적으로 농업용수 사용량(0.36~0.48)보다 인위적 수문학적 가뭄에 보다 큰 영향을 미치고 있으며, 값이 적을수록 생공용수 사용량의 영향이 보다 더 크다는 것이 확인되었다. 이를 바탕으로 인위적 수문학적 가뭄의 대응을 위해서는 농업용수 사용량보다 생공용수 사용량의 감축이 우선적으로 이루어져야 그 효과가 클 것으로 판단된다. 본 연구에서 제시한 모형은 베이지안 네트워크를 기반으로 하므로, 둘 이상의 인자에 대하여 복합적으로 가뭄에 영향을 미치는 영향에 대한 추가적인 연구가 가능하다.

  • PDF

Reliability Analysis for Estimations of the Probability of Pipe Breaking (파이프의 파괴확률 산정을 위한 신뢰성 해석)

  • Kwon, Hyuk-Jae;Lee, Cheol-Eung;Choi, Han-Kuy
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.850-853
    • /
    • 2008
  • 송수관이나 배수관은 계획된 필요유량을 특정 지점까지 안전하게 전달할 수 있도록 설계되지만 여러 가지원인으로 인하여 갑작스런 파열이나 균열이 일어난다. 파이프 파괴의 원인으로는 수격현상, 관의노화, 파이프 외부로부터의 충격, 흙의 상태, 그리고 파이프 설치시의 공사여건 등이 있다. 본 연구에서 여러 가지 요인들을 불확실성 인자로 가정하여 파이프의 파괴확률을 산정할 수 있는 신뢰성 해석 모형이 개발되었다. 상수관망의 설계 시 파이프의 두께를 산정하는 주 장력 공식을 이용하여 신뢰함수를 만들고 파이프의 파괴확률을 계산하였다. 신뢰함수를 구성하는 확률변수들 중 파이프의 내압에 대한 분포함수는 정규분포가 아닌 극치분포(Gumbel distribution)를 따른다는 것을 부정류 수치해석 결과로서 알 수 있었고 AFDA(Approximate Full Distribution Approach) 기법을 사용하여 파괴확률을 산정하였다. 신뢰성 모형을 이용하여 파이프의 두께, 직경, 허용응력, 그리고 파이프 내압에 따른 파괴확률을 정량적으로 산정할 수 있었다. 본 연구에서 개발된 신뢰성 해석모형을 이용하여 보다 안전하고 경제적인 송배수관의 설계기법을 구축할 수 있을 것이다.

  • PDF

Verification on the Fracture Size Estimation Using Forward Modeling Approach (순산 모델링 기법을 이용한 단열크기 추정방법 고찰)

  • 김경수;김천수;배대석;정지곤
    • The Journal of Engineering Geology
    • /
    • v.8 no.1
    • /
    • pp.1-12
    • /
    • 1998
  • The fracture size among geometric parameters of the fracture system is treated as one of the most important factors in the geotechnical and hydrogeological analysis. However, several uncertainties in data acquisition and analysis pmcess about the fracture size are not clear yet. This study presents the current status on the estimation of the fracture size and verifies the estimating method using forward modeling approach. The factors considered are the variation of fracture intersection probabilities with different assumptions on the orientation of sampling planes and fracture size by using a simulated tleee dimensional fracture network model. If it is possible to analyze precisely the fracture intersection probabilities and the characteristics of probabilistic distnbution fiom cavern walls, outcrops or boreholes,the actual fracture size developed in rock rnass can be estimated confidently.

  • PDF

Application of KED Method for Estimation of Spatial Distribution of Probability Rainfall (확률강우량의 공간분포 추정을 위한 KED 기법의 적용)

  • Seo, Young-Min;Yeo, Woon-Ki;Lee, Seung-Yoon;Jee, Hong-Kee
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.8
    • /
    • pp.757-767
    • /
    • 2010
  • This study employs the KED method using the correlations between probability rainfall and topographical factors as single auxiliary variable for assessing the effectiveness of external variables to improve the reliability in the estimation of spatial distribution of probability rainfall. As a result, the KED method gives similar results compared with deterministic spatial interpolation methods and kriging methods in the estimation of rainfall spatial distribution and mean areal rainfall, and as a result of the cross-validations of KED and kriging methods, the KED method using terrain elevation as auxiliary variable gives the best results, which are not significantly different in comparisons with other methods.

마코프 로지스틱 회귀모형을 이용한 강수 확률예측

  • Park, Jeong-Su
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.345-352
    • /
    • 2006
  • 현 기상의 시점에서 강수 확률 예측을 위해 가장 적절한 모형은 공간적 종속성과 시간적 종속성을 고려한 모형이 선택되어져야 한다. 보통 마크프 연쇄 모형과 예보인자를 이용하는 회귀 모형이 모두 고려된 모형을 사용한다. 본 논문에서는 강수 형태를 세 개의 상태로 나눈 경우, 즉 맑은 경우, 흐린 경우, 비온 경우로 나누어 마코프 로지스틱 회귀모형을 세우고 강수확률을 예측 할 수 있도록 하였다. 또한 서울 지역의 강수 자료를 이용하여 기존의 마코프 회귀모형과 마코프 로지스틱 회귀모형을 서로 비교하여 실제적 적용 문제를 다루었다.

  • PDF

Disaster risk prediction under the condition of future climate change (미래 기후변화에 따른 재해위험도 예측)

  • Lee, Jeong-Ju;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.125-125
    • /
    • 2011
  • 본 연구에서는 기후변화에 의한 자연재해 취약성을 정량적으로 분석하기 위하여 기상인자와 재해발생으로 인한 피해액의 상관관계를 이용하였다. 재해로 인한 피해액은 1994년부터 2008년까지 15년간 전국 시군별로 피해액을 집계한 자료를 이용하였으며, 우리나라 58개 강우관측소의 일강수량 자료를 이용하여 재해에 영향을 줄 수 있는 네 가지 인자를 추출하였고, 연도별 태풍 발생 횟수도 하나의 기상인자로 고려하였다. 피해액의 규모는 가뭄, 화재, 태풍 및 해일 등 재해발생 유형에 따라서도 영향을 받겠지만, 기후변화 시나리오에 의해 예측할 수 있는 대표적인 미래 추정값은 강수량과 온도 등이며, 결국 재해발생 유형별 시나리오에 의한 재해규모 예측이 아닌 기후변화 시나리오에 의한 미래 재해발생 규모 모형을 구축하기 위해서는 관련 인자로서 강수량으로부터 추출한 인자들을 고려할 수밖에 없을 것이다. 일강수량으로부터 추출한 네 가지 영향인자들은 80mm이상 일강수량 발생일수, 80mm이상 일강수량의 합, 80mm이상 강우의 발생 간격이 30일 이하인 횟수 및 연최대강수량이다. 우선 광역시와 도별로 전국 58개 관측소를 분류하고, 해당 관측소들로부터 추출된 인자들의 평균값을 이용하여 연구를 진행하였다. 미래 강수량 자료는 국립기상연구소의 A2시나리오를 통계학적 Downscaling을 통해 재생산한 자료를 이용하였다. 예측모형은 Bayesian 모형을 기반으로 DEXP(double exponential distribution) 확률분포를 이용하였다. 재해피해액 를 아래와 같이 비정상성 모형으로 구성하였으며, 위치매개 변수의 확률분포를 네 가지 기상인자에 의한 회귀식으로 구성하였다. Y damage costs) = dexp(${\mu}(t),\tau(t)$) $p({\mu}(t))\sim(abs({\alpha}+{\alpha}_1X_1+{\alpha}_2X_2+{\alpha}_3X_3+{\alpha}_4X_4,\;\sigma_{\alpha}^2)$ $p(\tau){\sim}G(k,s)$.

  • PDF

An Optimization method of CDHMM using Genetic Algorithms (유전자 알고리듬을 이용한 CDHMM의 최적화)

  • 백창흠
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06c
    • /
    • pp.71-74
    • /
    • 1998
  • HMM (hidden Markov model)을 이용한 음성인식은 현재 가장 널리 쓰여지고 있는 방법으로, 이 중 CDHMM (continuous observation density HMM)은 상태에서 관측심볼확률을 연속확률밀도를 사용하여 표현한다. 본 논문에서는 가우스 혼합밀도함수를 사용하는 CDHMM의 상태천이확률과, 관측심볼확률을 표현하기 위한 인자인 평균벡터, 공분산 행렬, 가지하중값을 유전자 알고리듬을 사용하여 최적화하는 방법을 제안하였다. 유전자 알고리듬은 매개변수 최적화문제에 대하여 자연의 진화원리를 모방한 알고리듬으로, 염색체 형태로 표현된 개체군 (population) 중에서 환경에 대한 적합도 (fitness)가 높은 개체가 높은 확률로 살아남아 재생 (reproduction)하게 되며, 교배 (crossover)와 돌연변이 (mutation) 연산 후에 다음 세대 개체군을 형성하게 되고, 이러한 과정을 반복하면서 최적의 개체를 구하게 된다. 본 논문에서는 상태천이확률, 평균벡터, 공분산행렬, 가지하중값을 부동소수점수 (floating point number)의 유전자형으로 표현하여 유전자 알고리듬을 수행하였다. 유전자 알고리듬은 복잡한 탐색공간에서 최적의 해를 찾는데 효과적으로 적용되었다.

  • PDF

확률론적 지진위험도의 불확실성 영향인자의 단계별 범위 영향 분석

  • 김준경;윤철호;이성규;임창복;김문수
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05d
    • /
    • pp.405-409
    • /
    • 1996
  • 본 연구는 일정 지역의 확률론적 지진위험도 (Probabilistic Seismic Hazard) 평가와 관련하여 전문가가 제시한 제1차 입력자료를 이용하여 제2차 입력자료를 도출할 때 입력자료의 다단계화를 통하여 각 단계별 구간의 입력자료가 확률론적 지진위험도 불확실성에 미치는 상대적 영향을 분석하였다. 확률론적 지진위험도 분석을 위하여 미국지질조사연구소 (USGS) 및 미국 로렌스리버모어 연구소(LLNL)가 개발한 전산코드를 각각 이용하였고 또한 전문가가 제시한 제 1차 입력자료는 기존 연구보고서에서 주어진 자료를 이용하였다. 분석결과 지진활동도 변수 특히 지진규모의 각 단계 및 감쇠특성함수의 진앙거리 단계에 따라서 확률론적 지진위험도의 절대값 및 불확실성에 미치는 영향의 차이가 상대적으로 크다는 것이 확인되었다. 또한 부지별로 이러한 분석을 함으로서 확률론적 지진 위험도 곡선에 영향을 미치는 임의 부지에 고유한 임계 지진규모 및 임계 진앙거리에 대한 분석을 통하여 전반적으로 불확실성을 감소시킬 수 있다.

  • PDF