• Title/Summary/Keyword: 확률론적 탐색

Search Result 34, Processing Time 0.026 seconds

An Adaptive Algorithm for Plagiarism Detection in a Controlled Program Source Set (제한된 프로그램 소스 집합에서 표절 탐색을 위한 적응적 알고리즘)

  • Ji, Jung-Hoon;Woo, Gyun;Cho, Hwan-Gyu
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10b
    • /
    • pp.580-585
    • /
    • 2006
  • 본 논문에서는 대학생들의 프로그래밍 과제물이나 프로그래밍 경진대회에 제출된 프로그램과 같이 동일한 기능을 요구받는 프로그램 소스 집합들에서 표절 행위가 있었는지를 탐색하는 새로운 알고리즘을 제시한다. 본 논문에서는 프로그램의 소스 집합에서 추출된 키워드들의 빈도수에 기반한 로그 확률값을 가중치로 하는 적응적(adaptive) 유사도 행렬을 만들어 이를 기반으로 주어진 프로그램의 유사구간을 탐색하는 지역정렬(local alignment) 방법을 소개한다. 우리는 10여개 이상의 프로그래밍 대회에 제출된 실제 프로그램으로 본 방법론을 실험하였다. 실험결과 이 방법은 이전의 고정적 유사도 행렬(일치 +1, 불일치 -1, 갭(gap)을 이용한 일치 -2)에 의한 유사구간 탐색에 비하여 여러 장점이 있음을 알 수 있었으며, 보다 다양한 표절탐색 목적으로 제시한 적응적 유사도 행렬이 응용될 수 있음을 알 수 있었다.

  • PDF

Optimal Control of Voltage and Reactive Power in Local Area Using Genetic Algorithm (유전알고리즘을 이용한 지역계통의 전압 및 무효전력 최적제어)

  • 김종율;김학만;남기영
    • Journal of Energy Engineering
    • /
    • v.12 no.1
    • /
    • pp.42-48
    • /
    • 2003
  • In system planing and operation, voltage and reactive power control is very important. The voltage deviation and system losses can be reduced through control of reactive power sources. In general, there are several different reactive power sources, we used switched shunt capacitor to improve the voltage profile and to reduce system losses. Since there are many switched shunt capacitors in power system, so it if necessary to coordinate these switched shunt capacitors. In this study, Genetic Algorithm (GA) is used to find optimal coordination of switched shunt capacitors in a local area of power system. In case study, the effectiveness of the proposed method is demonstrated in KEPCO's power system. The simulation is performed by PSS/E and the results of simulation are compared with sensitivity method.

An Adaptive Algorithm for Plagiarism Detection in a Controlled Program Source Set (제한된 프로그램 소스 집합에서 표절 탐색을 위한 적응적 알고리즘)

  • Ji, Jeong-Hoon;Woo, Gyun;Cho, Hwan-Gue
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.12
    • /
    • pp.1090-1102
    • /
    • 2006
  • This paper suggests a new algorithm for detecting the plagiarism among a set of source codes, constrained to be functionally equivalent, such are submitted for a programming assignment or for a programming contest problem. The typical algorithms largely exploited up to now are based on Greedy-String Tiling, which seeks for a perfect match of substrings, and analysis of similarity between strings based on the local alignment of the two strings. This paper introduces a new method for detecting the similar interval of the given programs based on an adaptive similarity matrix, each entry of which is the logarithm of the probabilities of the keywords based on the frequencies of them in the given set of programs. We experimented this method using a set of programs submitted for more than 10 real programming contests. According to the experimental results, we can find several advantages of this method compared to the previous one which uses fixed similarity matrix(+1 for match, -1 for mismatch, -2 for gap) and also can find that the adaptive similarity matrix can be used for detecting various plagiarism cases.

Optimum Structural Design of Tankers Using Multi-objective Optimization Technique (다목적함수 최적화기법을 이용한 유조선의 최적구조설계)

  • 신상훈;장창두;송하철
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.4
    • /
    • pp.591-598
    • /
    • 2002
  • In the ship structural design, the material cost of hull weight and the overall cost of construction processes should be minimized considering safety and reliability. In the past, minimum weight design has been mainly focused on reducing material cost and increasing dead weight reflect the interests of a ship's owner. But, in the past experience, the minimum weight design has been inevitably lead to increasing the construction cost. Therefore, it is necessary that the designer of ship structure should consider both structural weight and construction cost. In this point of view, multi-objective optimization technique is proposed to design the ship structure in this study. According to the proposed algorithm, the results of optimization were compared to the structural design of actual VLCC(Very Large Crude Oil Carrier). Objective functions were weight cost and construction cost of VLCC, and ES(Evolution Strategies), one of the stochastic search methods, was used as an optimization solver. For the scantlings of members and the estimations of objectives, classification rule was adopted for the longitudinal members, and the direct calculation method, GSDM(Generalized Slope Deflection Method), lot the transverse members. To choose the most economical design point among the results of Pareto optimal set, RFR(Required Freight Rate) was evaluated for each Pareto point, and compared to actual ship.

The Decision of Famous Business Areas for Small and Middle Enterprises (중소기업 유망 사업분야 선정 방법론에 대한 고찰)

  • Park, chang kirl;Hahn, hyuk;Roh, hyun sook
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2007.11a
    • /
    • pp.462-467
    • /
    • 2007
  • All of enterprises are diversifying it's business items for going concern. But it is very difficult to find a successful business items because they should be in front of various risk factors. Especially the small and middle enterprises are inferior to the large enterprises in every way likes technology development, marketing and human resources etc. So, it can be a decisive decision making to branch out to them. Because they should concentrate their resources for it. This research introduce systematic approach of the decision of famous business items for small and middle enterprises.

  • PDF

A Study on Spatial Statistical Perspective for Analyzing Spatial Phenomena in the Framework of GIS: an Empirical Example using Spatial Scan Statistic for Detecting Spatial Clusters of Breast Cancer Incidents (공간현상 분석을 위한 GIS 기반의 공간통계적 접근방법에 관한 고찰: 공간 군집지역 탐색을 위한 공간검색통계량의 실증적 사례분석)

  • Lee, Gyoung-Ju;Kweon, Ihl
    • Spatial Information Research
    • /
    • v.20 no.1
    • /
    • pp.81-90
    • /
    • 2012
  • When analyzing geographical phenomena, two properties need to be considered. One is the spatial dependence structure and the other is a variation or an uncertainty inhibited in a geographic space. Two problems are encountered due to the properties. Firstly, spatial dependence structure, which is conceptualized as spatial autocorrelation, generates heterogeneous geographic landscape in a spatial process. Secondly, generic statistics, although suitable for dealing with stochastic uncertainty, tacitly ignores location information im plicit in spatial data. GIS is a versatile tool for manipulating locational information, while spatial statistics are suitable for investigating spatial uncertainty. Therefore, integrating spatial statistics to GIS is considered as a plausible strategy for appropriately understanding geographic phenomena of interest. Geographic hot-spot analysis is a key tool for identifying abnormal locations in many domains (e.g., criminology, epidemiology, etc.) and is one of the most prominent applications by utilizing the integration strategy. The article aims at reviewing spatial statistical perspective for analyzing spatial processes in the framework of GIS by carrying out empirical analysis. Illustrated is the analysis procedure of using spatial scan statistic for detecting clusters in the framework of GIS. The empirical analysis targets for identifying spatial clusters of breast cancer incidents in Erie and Niagara counties, New York.

A Study on the Optimization Method using the Genetic Algorithm with Sensitivity Analysis (민감도가 고려된 알고리듬을 이용한 최적화 방법에 관한 연구)

  • Lee, Jae-Gwan;Sin, Hyo-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1529-1539
    • /
    • 2000
  • A newly developed optimization method which uses the genetic algorithm combined with the sensitivity analysis is presented in this paper. The genetic algorithm is a probabilistic method, searching the optimum at several points simultaneously, requiring only the values of the object and constraint functions. It has therefore more chances to find global solution and can be applied various problems. Nevertheless, it has such shortcomings that even it approaches the optimum rapidly in the early stage, it slows down afterward and it can't consider the constraints explicitly. It is only because it can't search the local area near the current points. The traditional method, on the other hand, using sensitivity analysis is of great advantage in searching the near optimum. Thus the combination of the two techniques makes use of the individual advantages, that is, the superiority both in global searching by the genetic algorithm and in local searching by the sensitivity analysis. Application of the method to the several test functions verifies that the method suggested is very efficient and powerful to find the global solutions, and that the constraints can be considered properly.

Optimum Design of Composite Laminated Beam Using GA (유전알고리즘을 이용한 복합 적층보의 최적설계)

  • 구봉근;한상훈;이상근
    • Computational Structural Engineering
    • /
    • v.10 no.4
    • /
    • pp.349-358
    • /
    • 1997
  • The present paper describes an investigation into the application of the genetic algorithm (GA) in the optimum design of composite laminated structure. Stochastic processes generate an initial population of designs and then apply principles of natural selection/survival of the fittest to improve the designs. The five test functions are used to verify the robustness and reliability of the GA, and as a numerical example, minimum weight of a cantilever composite laminated beam with a mix of continuous, integer and discrete design variables is obtained by using the GA with exterior penalty function method. The design problem has constraints on strength, displacements, and natural frequencies, and is formulated to a multidimensional nonlinear form. From the results, it is found that the GA search technique is very effective to find the good optimum solution as well as has higher robustness.

  • PDF

Discrete Optimization of Structural System by Using the Harmony Search Heuristic Algorithm with Penalty Function (벌칙함수를 도입한 하모니서치 휴리스틱 알고리즘 기반 구조물의 이산최적설계법)

  • Jung, Ju-Seong;Choi, Yun-Chul;Lee, Kang-Seok
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.33 no.12
    • /
    • pp.53-62
    • /
    • 2017
  • Many gradient-based mathematical methods have been developed and are in use for structural size optimization problems, in which the cross-sectional areas or sizing variables are usually assumed to be continuous. In most practical structural engineering design problems, however, the design variables are discrete. The main objective of this paper is to propose an efficient optimization method for structures with discrete-sized variables based on the harmony search (HS) meta-heuristic algorithm that is derived using penalty function. The recently developed HS algorithm was conceptualized using the musical process of searching for a perfect state of harmony. It uses a stochastic random search instead of a gradient search so that derivative information is unnecessary. In this paper, a discrete search strategy using the HS algorithm with a static penalty function is presented in detail and its applicability using several standard truss examples is discussed. The numerical results reveal that the HS algorithm with the static penalty function proposed in this study is a powerful search and design optimization technique for structures with discrete-sized members.

Study on Feasibility of Applying Function Approximation Moment Method to Achieve Reliability-Based Design Optimization (함수근사모멘트방법의 신뢰도 기반 최적설계에 적용 타당성에 대한 연구)

  • Huh, Jae-Sung;Kwak, Byung-Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.2
    • /
    • pp.163-168
    • /
    • 2011
  • Robust optimization or reliability-based design optimization are some of the methodologies that are employed to take into account the uncertainties of a system at the design stage. For applying such methodologies to solve industrial problems, accurate and efficient methods for estimating statistical moments and failure probability are required, and further, the results of sensitivity analysis, which is needed for searching direction during the optimization process, should also be accurate. The aim of this study is to employ the function approximation moment method into the sensitivity analysis formulation, which is expressed as an integral form, to verify the accuracy of the sensitivity results, and to solve a typical problem of reliability-based design optimization. These results are compared with those of other moment methods, and the feasibility of the function approximation moment method is verified. The sensitivity analysis formula with integral form is the efficient formulation for evaluating sensitivity because any additional function calculation is not needed provided the failure probability or statistical moments are calculated.