• Title/Summary/Keyword: 확률강우량도

Search Result 477, Processing Time 0.02 seconds

Prediction of Forest Fire Danger Rating over the Korean Peninsula with the Digital Forecast Data and Daily Weather Index (DWI) Model (디지털예보자료와 Daily Weather Index (DWI) 모델을 적용한 한반도의 산불발생위험 예측)

  • Won, Myoung-Soo;Lee, Myung-Bo;Lee, Woo-Kyun;Yoon, Suk-Hee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.14 no.1
    • /
    • pp.1-10
    • /
    • 2012
  • Digital Forecast of the Korea Meteorological Administration (KMA) represents 5 km gridded weather forecast over the Korean Peninsula and the surrounding oceanic regions in Korean territory. Digital Forecast provides 12 weather forecast elements such as three-hour interval temperature, sky condition, wind direction, wind speed, relative humidity, wave height, probability of precipitation, 12 hour accumulated rain and snow, as well as daily minimum and maximum temperatures. These forecast elements are updated every three-hour for the next 48 hours regularly. The objective of this study was to construct Forest Fire Danger Rating Systems on the Korean Peninsula (FFDRS_KORP) based on the daily weather index (DWI) and to improve the accuracy using the digital forecast data. We produced the thematic maps of temperature, humidity, and wind speed over the Korean Peninsula to analyze DWI. To calculate DWI of the Korean Peninsula it was applied forest fire occurrence probability model by logistic regression analysis, i.e. $[1+{\exp}\{-(2.494+(0.004{\times}T_{max})-(0.008{\times}EF))\}]^{-1}$. The result of verification test among the real-time observatory data, digital forecast and RDAPS data showed that predicting values of the digital forecast advanced more than those of RDAPS data. The results of the comparison with the average forest fire danger rating index (sampled at 233 administrative districts) and those with the digital weather showed higher relative accuracy than those with the RDAPS data. The coefficient of determination of forest fire danger rating was shown as $R^2$=0.854. There was a difference of 0.5 between the national mean fire danger rating index (70) with the application of the real-time observatory data and that with the digital forecast (70.5).

Development and validation of poisson cluster stochastic rainfall generation web application across South Korea (포아송 클러스터 가상강우생성 웹 어플리케이션 개발 및 검증 - 우리나라에 대해서)

  • Han, Jaemoon;Kim, Dongkyun
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.4
    • /
    • pp.335-346
    • /
    • 2016
  • This study produced the parameter maps of the Modified Bartlett-Lewis Rectangular Pulse (MBLRP) stochastic rainfall generation model across South Korea and developed and validated the web application that automates the process of rainfall generation based on the produced parameter maps. To achieve this purpose, three deferent sets of parameters of the MBLRP model were estimated at 62 ground gage locations in South Korea depending on the distinct purpose of the synthetic rainfall time series to be used in hydrologic modeling (i.e. flood modeling, runoff modeling, and general purpose). The estimated parameters were spatially interpolated using the Ordinary Kriging method to produce the parameter maps across South Korea. Then, a web application has been developed to automate the process of synthetic rainfall generation based on the parameter maps. For validation, the synthetic rainfall time series has been created using the web application and then various rainfall statistics including mean, variance, autocorrelation, probability of zero rainfall, extreme rainfall, extreme flood, and runoff depth were calculated, then these values were compared to the ones based on the observed rainfall time series. The mean, variance, autocorrelation, and probability of zero rainfall of the synthetic rainfall were similar to the ones of the observed rainfall while the extreme rainfall and extreme flood value were smaller than the ones derived from the observed rainfall by the degree of 16%-40%. Lastly, the web application developed in this study automates the entire process of synthetic rainfall generation, so we expect the application to be used in a variety of hydrologic analysis needing rainfall data.

The Factor Analysis of Land Surface Temperature(LST) Change using MODIS Imagery and Panel Data (MODIS 영상 자료와 패널 자료를 이용한 지표면온도변화 요인분석)

  • BAE, Da-Hye;KIM, Hong-Myung;HA, Sung-Ryong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.1
    • /
    • pp.46-56
    • /
    • 2018
  • This paper aimed to identify main factors of community characters, which have an effect on the land surface temperature(LST) change and estimate the impacting coefficient(ratio) of factors in a significant level of statistics. Chungcheongbuk-do province was selected and then partitioned into city and county areas for the sake of convenience of modeling. LST time series data and the community character data were developed based on Terra Satellite MODIS data and collected from the National Statistical Office, respectively. By the cause and effect relationship between community characters and LST, regression coefficients were estimated using a penal model. In a panel modeling, LST and community characters were used as a dependent variable and explanatory variables, respectively. Panel modeling analysis was carried out using statistical package STATA14 and one-way fixed effect model was selected as the most suitable model to evaluate the regression coefficients in the study area. The impacting ratio of LST change by any explanatory variable derived from the regression coefficients of the panel model fixed. Impacting ratios for industrial areas, elevation ${\times}$ building, energy usage, average window speed, non-urban management area, agricultural, nature and environmental conservation, average precipitation were 3.746, 2.856, 2.742, 0.553, 0.102, 0.071 and 0.003, respectively.

Case study of landslide types in Korea (우리나라 산사태의 형태분류에 따른 사례)

  • 김원영;김경수;채병곤;조용찬
    • The Journal of Engineering Geology
    • /
    • v.10 no.2
    • /
    • pp.18-35
    • /
    • 2000
  • The most dominant type of landslide in Korea is debris flows which mostly take place along mountain slopes during the rainy season, July to August. The landslides have been reported to begin activation when rainfall is more than 200mm within 2days. The debris flows are usually followed by translational slips which occur upper part of mountain slopes and they transit to debris flow as getting down to the valleys. Lithology, location, slope inclination, grain size distribution of soil, permeability, dry density and porosity have been proved as triggering factor causing translational slides. The triggering data taken from mapping are statistically analysed to get landslide potential quantitatively. Rock mass creeps mostly occur on well bedded sedimentary rocks in Kyeongsang Basin. Although the displacement of rock mass creep is relatively small about 1m, the creep can cause severe hazards due to relatively large volume of the involved rock mass. Examples are rock mass creep occurred in the mouth of Hwangryongsan Tunnel, in Chilgok and in Sachon in 1999. Although the direct factor of the creeps are due to slope cutting at the foot area, more attention is required A rotational slide occurring within thick soil formation or weathered rock is also closely related to bottom part of slope cutting. It is propagated circular or semi-circular type. Especially in korea, the rotational slide may be frequently occurred in Tertiary tuff area. Because they are mainly composed of volcanic ash and pyroclastic materials, well developed joints and high degree of swelling and absorption can easily cause the slide. The landslide among the Pohang-Guryongpo national road is belong to this type of slide.

  • PDF

Effects of Turbid Water on Fish Community: Case Studies of the Daegi Stream and the Bong-san Stream (탁수가 어류군집에 미치는 영향: 대기천 및 봉산천의 사례연구)

  • Kim, Jai-Ku;Choi, Jae-Seok;Jang, Young-Su;Lee, Kwang-Yeol;Kim, Bom-Chul
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.3
    • /
    • pp.459-467
    • /
    • 2007
  • The effects of turbid water on fish community was investigated in a clear reference stream (the Bongsan Steam) and a turbid stream (the Daegi Stream) located in the upstream region of the South Han River, Korea. The stress index (SI) of suspended solids (SS) were calculated during a rain event concentration by the equation SI=LN (SS${\times}$duration). EMC of SS was $1{\sim}13$ mg $L^{-1}$ in the clear stream with a mean SI of 5.2, while SS was $97{\sim}1,150$ mg $L^{-1}$ in the turbid stream with a mean SI of 10.3. Even though the number of species was not much different, the dominant species of the two steams were distinctly different. The reference stream was dominated by upstream species such as Rhynchocypris kumgangensis, Brachymystax lenok tsinlingensis, and Cottus poecilopus which are typical upstream community. Whereas the turbid streams was dominated by Rhynchocypris kumgangensis, Zacco koreanus, and Orthrias nudus which are representatives of middle reache community. Fish density was four times higher in the clear steam than the turbid stream. In the similarity analysis of fish communities the community of the turbid stream showed large dissimilarity with other communities in other streams of similar size. In conclusion, although turbidity might be at the sublethal concentration, fish communities are under stress in some turbid streams of Korea that is strong enough to induce community change. It can be an example of a chronic ecological toxicity of turbidity at the community level.

A study on prediction method for flood risk using LENS and flood risk matrix (국지 앙상블자료와 홍수위험매트릭스를 이용한 홍수위험도 예측 방법 연구)

  • Choi, Cheonkyu;Kim, Kyungtak;Choi, Yunseok
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.9
    • /
    • pp.657-668
    • /
    • 2022
  • With the occurrence of localized heavy rain while river flow has increased, both flow and rainfall cause riverside flood damages. As the degree of damage varies according to the level of social and economic impact, it is required to secure sufficient forecast lead time for flood response in areas with high population and asset density. In this study, the author established a flood risk matrix using ensemble rainfall runoff modeling and evaluated its applicability in order to increase the damage reduction effect by securing the time required for flood response. The flood risk matrix constructs the flood damage impact level (X-axis) using flood damage data and predicts the likelihood of flood occurrence (Y-axis) according to the result of ensemble rainfall runoff modeling using LENS rainfall data and as well as probabilistic forecasting. Therefore, the author introduced a method for determining the impact level of flood damage using historical flood damage data and quantitative flood damage assessment methods. It was compared with the existing flood warning data and the damage situation at the flood warning points in the Taehwa River Basin and the Hyeongsan River Basin in the Nakdong River Region. As a result, the analysis showed that it was possible to predict the time and degree of flood risk from up to three days in advance. Hence, it will be helpful for damage reduction activities by securing the lead time for flood response.

Proposal for Estimation Method of the Suspended Solid Concentration in EIA (환경영향평가에서 부유사 농도 추정 방법 제안)

  • Choo, Tai Ho;Kim, Young Hwan;Park, Bong Soo;Kwon, Jae Wook;Cho, Hyun Min
    • Journal of Wetlands Research
    • /
    • v.19 no.1
    • /
    • pp.30-36
    • /
    • 2017
  • SS(Suspended Solid) concentration by soil erosion into river at normal and flood season should be measured. However, to present the variation of SS due to various development project such as EIA(Environmental Impact Assessment), River Master Plan, and so on, it is necessary to estimate not measure SS, but there are not exist how to estimate SS. In the present study, therefore, we propose the hydrologic method of estimating SS concentration using the results of particular frequency flood discharge and sediment discharge by RUSLE method. SS consists of silty and clay soil and colloid particle etc. However, in the present study, silty and clay soils of sediment discharge except send set up SS standards. The flow discharge to estimate SS concentration are 1~2 years for normal season, 30~100 years for flood season. Meanwhile, analysis software for probable rainfall uses Fard2006, probable rainfalls under 2-year frequency are estimated using rainfall data and frequency factor of Gumbel distribution. The results of estimating SS concentration using runoff volume by sediment and flow discharges of silty and cray soils as above method show that reliable level of SS concentration is considered in predevelopment of natural condition and under development of barren condition. Especially, SS concentration takes notice that the value of sediment discharge makes a huge difference according to channel slope, it was confirmed that the value obtained by dividing the SS concentration by the channel slope is relatively constant even though the topographical factors are different. Therefore, if the present study will be proceeded for various watersheds, it will be developed as estimation method of SS concentration.