Effects of Turbid Water on Fish Community: Case Studies of the Daegi Stream and the Bong-san Stream

탁수가 어류군집에 미치는 영향: 대기천 및 봉산천의 사례연구

  • Kim, Jai-Ku (Department of Environmental Science, Kangwon National University) ;
  • Choi, Jae-Seok (Institute of Environmental Research, Kangwon National University) ;
  • Jang, Young-Su (Department of Environmental Science, Kangwon National University) ;
  • Lee, Kwang-Yeol (Department of Biology, Kangwon National University) ;
  • Kim, Bom-Chul (Department of Environmental Science, Kangwon National University)
  • Published : 2007.09.30

Abstract

The effects of turbid water on fish community was investigated in a clear reference stream (the Bongsan Steam) and a turbid stream (the Daegi Stream) located in the upstream region of the South Han River, Korea. The stress index (SI) of suspended solids (SS) were calculated during a rain event concentration by the equation SI=LN (SS${\times}$duration). EMC of SS was $1{\sim}13$ mg $L^{-1}$ in the clear stream with a mean SI of 5.2, while SS was $97{\sim}1,150$ mg $L^{-1}$ in the turbid stream with a mean SI of 10.3. Even though the number of species was not much different, the dominant species of the two steams were distinctly different. The reference stream was dominated by upstream species such as Rhynchocypris kumgangensis, Brachymystax lenok tsinlingensis, and Cottus poecilopus which are typical upstream community. Whereas the turbid streams was dominated by Rhynchocypris kumgangensis, Zacco koreanus, and Orthrias nudus which are representatives of middle reache community. Fish density was four times higher in the clear steam than the turbid stream. In the similarity analysis of fish communities the community of the turbid stream showed large dissimilarity with other communities in other streams of similar size. In conclusion, although turbidity might be at the sublethal concentration, fish communities are under stress in some turbid streams of Korea that is strong enough to induce community change. It can be an example of a chronic ecological toxicity of turbidity at the community level.

동일 수계에 위치하며 하천의 규모가 비슷하지만 유역의 특성에 따라 강우시 탁수의 영향을 크게 받는 탁수하천과 대조하천을 대상으로 어류서식지 및 군집구조의 특성을 비교하였다. 탁수하천인 대기천의 하천바닥은 주로 모래로 구성되었으며, 대조하천인 봉산천과 계방천은 큰 돌과 작은 돌이 우점하였다. 강우시 탁수하천에서 강우량에 따른 단위면적당 SS 유출은 대조하천에 비해 $4{\sim}200$배정도 높았으며, 이에 따른 서식지의 스트레스 지수는 탁수하천이 약 84배정도 더 크게 받는 것으로 나타났다. 탁수하천과 대조 하천간에 출현종수는 큰 차이를 보이지 않았지만 우점종은 서로 다르게 나타났다. 맑은 하천인 봉산천에서는 하천의 최상류어종인 금강모치, 열목어, 둑중개 등이 우점하였으나, 탁수하천인 대기천에서는 금강모치와 참갈겨니, 종개 등 하천의 중 상류성 어류들이 우점하는 것으로 나타났다. 단위면적당 어류밀도를 비교해본 결과, 탁수하천인 대기천은 대조하천인 봉산천에 비해 1/4로 낮게 나타났다. 집괴분석결과 대기천의 어류군집은 다른 하천의 어류군집과 전혀 다르게 나타났으며, 봉산천은 최상류의 어류군집을 유지하고 있는 것으로 나타났다. 결론적으로, 탁수는 어류의 개체나 개체군을 사멸시킬 확률이 높지 않으나, 강한 스트레스 아래에서 어류군집은 충분히 변화할 수 있다. 같은 수계에서 우점종의 차이가 나타난 것은 탁수가 군집수준에서 만성생태 독성으로 작용하였음을 보여주는 결과이다.

Keywords

References

  1. 김익수. 1997. 한국동식물도감. 제37권 동몰편 (담수어류). 교육부. p. 133-520
  2. 김익수, 강언종. 1993. 원색 한국어류도감. 아카데미서적. p 252-264
  3. 남명모, 양홍준, 채병수, 강영훈. 1998. 내린천의 어류상과 군집구조, 한어지 10: 61-66
  4. 최기철, 전상린, 김익수, 손영목. 1990. 원색한국담수어도감. 향문사. 277p
  5. 한강수계관리위원회. 2004. 탁수로 인한 수중생태계 영향조사 및 저감대책 제시, 한강유역환경청
  6. 홍재상, 서인수, 윤건탁, 황인서, 김창수. 2004. 강릉 남대천 하구역의 1997년 9월 중 대형저서동물 분포패턴, 환경생물 22: 341-350
  7. Bash, J., C. Berman and S. Bolton. 2001. Effects of turbidity and suspended solids on Salmonids. WA-RD 526.1. Univ. of Washington, Seattle, WA
  8. Cederholm, C.J. and E.O. Salo. 1979. The effects of logging road landslide siltation on the salmon and trout spawning gravels of Stequaleho Creek and the Clearwater River basin, Jefferson County, Washington, 1972-1978. FRO-UW-7915. Fisheries Research Institute, University of Washington, Seattle. WA. 99p
  9. Chapman, D.W. 1988. Critical review of variables used to define effects of fines in redds of large salmonids. Transactions of the American Fisheries Society 117: 1-21 https://doi.org/10.1577/1548-8659(1988)117<0001:CROVUT>2.3.CO;2
  10. Cobel, D.W. 1961. Influence of water exchange and dissolved oxygen in redds on survival of steelhead trout embryos. Transactions of the Americal Fisheries Society 90: 469-474 https://doi.org/10.1577/1548-8659(1961)90[469:IOWEAD]2.0.CO;2
  11. Cummins, K.W. 1962. An evaluation of some techniques for the collection analysis of benthic samples with special emphasis on lotic waters. American Midland Naturalist 67: 477-504 https://doi.org/10.2307/2422722
  12. EIFAC (European Inland Fisheries Advisory Commission). 1964. Water quality criteria for European freshwater fish: report on finely divided solids and inland fisheries. United Nations, Food and Agriculture Organization, EIFAC Technical Paper 1, Rome
  13. Gorman, O.T. and J.R. Karr. 1978. Habitat structure and stream fish communities. Ecology 59: 507-515 https://doi.org/10.2307/1936581
  14. Griffiths, W. and B. Walton. 1978. The effects of sedimentation on the aquatic biota. Alberta Oil Sands Environmental Research Program, Report No. 35
  15. Huter, J.W. 1973. A discussion of game fish in the State of Washington as related to water requirements. Report of Washington State Department of game, Fishery Management Division, to the Washington State Department of Ecology, Olympia, WA
  16. Jaccard, P. 1908. Nouvelles recherches sur la distribution florale. Bulletin Society Sciences Naturale 44: 223-270
  17. Kim, I.S., M.K. Oh and K. Hosoya. 2005. A new species of cyprinid fish, Zacco koreanus with redescription of Z. temminckii (cyprinidae) from Korea. Korean J. Ichthyol. 17: 1-7
  18. Lloyd, D.S. 1987. Turbidity as a water quality standard for salmonid habitats in Alaska. Nor. Am. J. Fish. Manag. 7: 34-45 https://doi.org/10.1577/1548-8659(1987)7<34:TAAWQS>2.0.CO;2
  19. Maret, T.R., T.A. Burton, G.W. Harvey and W.H. Clark. 2003. Field testing of new monitoring protocols to assess brown trout spawning habitant in Idaho streams. National Water Quality Assessment (NAWQA) Program, Upper Snake River Basin Study and Idaho Department of Environmental Quality. Available: www.idaho.wr.usgs.gov/journals/fieldtest.html (April 2003)
  20. Mills, W.B., D.B. Porcella, M.J. Ungs, S.A. GhErini and K.V. Summers. 1985. Water quality assessment: a screening procedure for toxic and conventional pollutions in surface and ground water. U.S. Environmental Protection Agency, Report 600/6-85/0.02a, Athens, GA
  21. Mountfold, M.D. 1962. An index similarity and its application to classification to classificatory program. In Murphy, P.W. (Ed.). Prog. Soil. Aool. Butt. p. 43-50
  22. Nelson, J.S. 1994. Fishes of the world. John Wiely & Sons, New York. 600p
  23. Newcombe, T.W. and D.D. MacDonald. 1991. Effects of suspended sediments on aquatic ecosystems. North American Journal of Fisheries Management 11: 72-82 https://doi.org/10.1577/1548-8675(1991)011<0072:EOSSOA>2.3.CO;2
  24. Noggle, C.C. 1978. Behavioral, physiological and lethal effects of suspended sediment on juvenile salmonids. Master's thesis. Univ. of Washington, Seattle, WA
  25. Reed, J.P., J.M. Miller, D.F. Pence and B. Schaich. 1983. The effects of low level turbidity on fish and their habitat. Report No. 190. North Carolina State Univ. Raleigh, NC
  26. Shapovalov, L. and W. Berrian. 1939. An experiment in hatching silver salmon (Oncorhynchus kisutch) eggs in gravel. Trans. Am. Fish. Soc. 69: 135-140 https://doi.org/10.1577/1548-8659(1939)69[135:AEIHSS]2.0.CO;2
  27. Shelton, J.M. and R.D. Pollock. 1966. Siltation and egg survival in incubation channels. Trans. Am. Fish. Soc. 95: 183-187 https://doi.org/10.1577/1548-8659(1966)95[183:SAESII]2.0.CO;2
  28. Sigler, J.W., T.C. Bjornn and F.H. Everest. 1984. Effects of chronic turbidity on density and growth of steelheads and coho salmon. Trans. Am. Fish. Soc. 113: 142-150 https://doi.org/10.1577/1548-8659(1984)113<142:EOCTOD>2.0.CO;2
  29. Silver, S.J., C.E. Warren and P. Doudoroff. 1963. Dissolved oxygen requirements of developing steelhead trout and chinook salmon embryos at different water velocities. Trans. Am. Fish. Soc. 92: 327-343 https://doi.org/10.1577/1548-8659(1963)92[327:DORODS]2.0.CO;2
  30. Wickett, W.P. 1954. The oxygen supply to salmon eggs in spawning bed. J. Fish. Res. Board Can. 11: 933-953 https://doi.org/10.1139/f54-053