• Title/Summary/Keyword: 화학합성

Search Result 4,105, Processing Time 0.027 seconds

A Study on the Natural Insectifuge for Food Wrapping Corrugated Board Using Tree Extractives (수목 추출성분을 이용한 식품포장용 골판지 천연 방충처리제 개발)

  • 배영수
    • Journal of Korea Foresty Energy
    • /
    • v.20 no.2
    • /
    • pp.9-19
    • /
    • 2001
  • This study was carried out to investigate natural insectifuge materials from tree extractives in order to substitute for organic synthetic insecticides for food wrapping corrugated board. Tree samples were collected, extracted, fractionated with hexane, $CH_2Cl_2$, ethylacetate(EtOAc) and $H_2O$, and then freezed dried for further study. EtOAc or $H_2O$ fractions were chromatographed on a Sephadex LH-20 column for isolation and purification, and the isolated compounds were characterized by spectroscopic tools such as NMR and MS. Crude extractives of EtOAc and $H_2O$ fractions were added to the printing ink for corrugated board with the concentration of 2% or 3% based on the weight of the ink, then the prepared ink was printed on the corrugated board to be used for evasion test using larva of indian meal moth(Plodia interpunctella(Hubner)). Robtin, dihydrorobinetin and leucorobinetinidin were isolated from the wood extractives of black locust(Robinia pseudoacacia) and the bark of poplar(Populus alba $\times$ glandulosa) contained many kinds of compounds such as (+)-catechin, naringenin, aromadendrin, eriodictyol, sakuranetin and its glycoside, taxifolin, neosaturanin, salireposide, p-coumaric acid and aesculin. Much of (+)-catechin was isolated from the bark extractives of willow(Salix koreensis) in addition to (+)-gallocatechin and p-coumaric acid and the bark of weeping willow(Salix babylonica) also contained (+)-catechin, (+)-gallocatechin, dihydromyricetin and myricetin.

  • PDF

Study of Optimization and Characteristics of PSCF3737(Pr0.3Sr0.7Co0.3Fe0.7O3) for IT-SOFC (중저온형 SOFC를 위한 PSCF3737(Pr0.3Sr0.7Co0.3Fe0.7O3) 공기극 물질의 특성 및 최적화께 관한 연구)

  • Park, Kwang-Jin;Lee, Chang-Bo;Kim, Jung-Hyun;Baek, Seung-Wook;Bae, Joong-Myeon
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.3
    • /
    • pp.207-212
    • /
    • 2007
  • [ $PSCF3737(Pr_{0.3}Sr_{0.7}Co_{0.3}Fe_{0.7}O_3)$ ] is a good candidate cathode material for IT-SOFC(intermediate temperature solid oxide fuel cell) because of high MIEC(mixed ionic electronic conductor) conductivity. In this study, the characteristics of PSCF3737 was investigated and optimizations of sintering temperature and thickness for $PSCF3737(Pr_{0.3}Sr_{0.7}Co_{0.3}Fe_{0.7}O_3)$ was carried out. Impedance responses were divided into two parts by frequency region. Middle frequency part (${\sim}10^2\;Hz$) was concerned with oxygen reduction reaction on surface and low frequency part (${\sim}10^{-1}\;Hz$) was related with oxygen diffusion. The reasonable sintering temperature and thickness of cathode were $1200^{\circ}C$ and about $27\;{\mu}m$ with regard to EIS(electrochemical impedance spectroscopy). ASR(areas specific resistance) of optimized cathode is $0.115\;{\Omega}\;cm^2$ at $700^{\circ}C$.

Physicochemical Properties and Biological Activities of Collagens with Different Molecular Weights from Alaska Pollack (Theragra chalcogramma) Skin (명태 껍질 유래 콜라겐의 분자량에 따른 이화학적 특성 및 생리활성)

  • Yang, Su-Jin;Hong, Joo-Heon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.10
    • /
    • pp.1535-1542
    • /
    • 2014
  • This study was conducted to investigate the physicochemical properties and biological activities of collagens with different molecular weights from Alaska pollack (Theragra chalcogramma) skin as well as their efficacies as functional materials. The molecular weights of collagens were between 1~10 kDa (below 1 kDa (AP1), 1~3 kDa (AP2), 3~10 kDa (AP3), and above 10 kDa (AP4). The protein content of AP4 (40.19 g/100 g) was the highest. Collagen contents of AP1, AP2, AP3, and AP4 were 36.43, 32.23, 19.23, and 14.89%, respectively. The free amino acid and essential amino acid contents of AP1 were higher than those of AP2, AP3, and AP4. Fourier transform infrared spectroscopy spectra of collagens with different molecular weights showed wavenumbers representing the regions of amide I, amide II, amide III, and amide A, respectively. The electron-donating ability (29.51%) and SOD-like activity (38.45%) of AP1 were higher than those of AP2, AP3, and AP4. Tyrosinase inhibition activity of AP1 improved with higher treatment concentration. The rate of inhibition of MMP-1 production in HS68 cells exposed to UVB was suppressed by treatment with AP1 (29.78%) and AP2 (26.49%) at 1 mg/mL. Furthermore, there was a strong correlation between DPPH, superoxide dismutase, tyrosinase activity, and MMP-1 inhibition rate of collagens with different molecular weights.

Enhanced Production of Astaxanthin in Paracoccus haeundaensis Strain by Physical and Chemical Mutagenesis (물리·화학적 돌연변이 유도를 통한 Paracoccus haeundaensis의 astaxanthin 생산량 증대)

  • Seo, Yong Bae;Jeong, Tae Hyug;Choi, Seong Seok;Lim, Han Kyu;Kim, Gun-Do
    • Journal of Life Science
    • /
    • v.27 no.3
    • /
    • pp.339-345
    • /
    • 2017
  • Carotenoids are natural lipid-soluble pigments, which are produced primarily by bacteria, algae, and plants. Many studies have focused on the identification, production, and utilization of natural sources of astaxanthin from algae, yeast, and crustacean byproducts as an alternative to the synthetic pigment, which is mostly used today. The aim of the present study was to identify a mutant of Paracoccus haeundaensis by exposure to UV and ethyl methanesulfonate (EMS). The mutant was then exposed to nutrient stress conditions to isolate an astaxanthin-hyperproducing strain, followed by characterization of the mutant. The survival rate decreased in accordance with an increase in the UV exposure time and an increase in the EMS concentration. A mutant of the original P. haeundaensis strain was identified that showed hyperproduction of astaxanthin following exposure to UV irradiation (20 min) and EMS treatment (0.4 M concentration). The optimal culture conditions for the PUE mutant were $25^{\circ}C$, pH 7-8, and 3% NaCl. The effects of various carbon and nitrogen sources on the growth and astaxanthin production of PUE were examined. The addition of 1% raffinose and 3% potassium nitrate influenced cell growth and astaxanthin production. The selected mutant exhibited an increase of 1.58 folds in astaxanthin content compared to initial wild type strain. A genetically stable mutant strain obtained using mutagen (UV irradiation and EMS treatment) may be a suitable candidate for further industrial scale production of astaxanthin.

The Catalytic Reduction of Carbon Dioxide by Butane over Nickel loaded Catalysts (니켈담지촉매상에서 부탄에 의한 이산화탄소의 환원반응)

  • Yoon, Cho-Hee;Kim, Geon-Joong
    • Applied Chemistry for Engineering
    • /
    • v.8 no.3
    • /
    • pp.543-549
    • /
    • 1997
  • The direct reaction of carbon dioxide($CO_2$) with butane($C_4H_{10}$) to obtain synthesis gas and hydrocarbon compounds have been studied on nickel loaded catalysts. In the reaction of $CO_2$ with $C_4H_{10}$, Ni loaded catalysts showed similar activity with Pt catalyst and Coke deposition on the catalyst was severe by dehydrogenation of butane. The main products were carbon monoxide and hydrogen, when alumina and Y type zeolite were used as a support. Instead, a great deal of aromatic hydrocarbons were obtained on the Ni loaded ZSM-5 catalyst. The conversion of $CO_2$ increased with the increasing molar ratio of $CO_2$/$C_4H_{10}$ on Ni/ZSM-5, Ni/NaY and Ni/alumina catalyst, but the conversion decreased again from the ratio of 2. The value of $CO_2$ conversion was the highest at the 5wt% of Ni loading on ZSM-5 catalyst. A part of cokes deposited on the catalysts diminished when only $CO_2$ gas or water steam flowed into the reactor. The coke deposited on the catalysts was very reactive and it may be an important intermediate for the carbon dioxide reforming reaction.

  • PDF

Adsorption and Storage of Hydrogen by Nanoporous Adsorbents (나노세공체 흡착제에 의한 수소 흡착 및 저장)

  • Jhung, Sung Hwa;Chang, Jong-San
    • Applied Chemistry for Engineering
    • /
    • v.18 no.2
    • /
    • pp.99-110
    • /
    • 2007
  • Efficient and inexpensive hydrogen storage is an essential prerequisite for the utilization of hydrogen, one of the new and clean energy sources for $21^{st}$ century. In this review, several storage techniques are briefly reviewed and compared. Especially, adsorption/storage via physisorption at low temperature, by using nanoporous adsorbents, is reviewed and evaluated for further developments. The adsorption over a porous material at low temperature is currently investigated deeply to fulfill the storage target. In this review, several characteristics needed for the high hydrogen adsorption capacity are introduced. It may be summarized that following characteristics are necessary for high storage capacity over porous materials: i) high surface area and micropore volume, ii) narrow pore size, iii) strong electrostatic field, and iv) coordinatively unsaturated sites, etc. Moreover, typical results demonstrating high storage capacity over nanoporous materials are summarized. Storage capacity up to 7.5 wt% at liquid nitrogen temperature and 80 atm is reported. Competitive adsorbents that are suitable for hydrogen storage may be developed via intensive and continuous studies on design, synthesis, manufacturing and modification of nanoporous materials.

Effect of Amine Oxide Zwitterionic Surfactant on Characteristics of Liposome (아민 옥사이드 양쪽성 계면활성제 첨가가 리포좀 특성에 미치는 영향에 관한 연구)

  • Mo, DaHee;Lee, SuMin;Lee, JuYeon;Han, DongSung;Lim, JongChoo
    • Applied Chemistry for Engineering
    • /
    • v.27 no.3
    • /
    • pp.291-298
    • /
    • 2016
  • In this study, zwitterionic surfactants were added to liposome systems at different pH conditions to understand the effect of surfactants on liposome characteristics. For this purpose, amine oxide surfactants having different hydrocarbon chain lengths were synthesized and the structure of the resulting product was elucidated by using $^1H$ NMR, $^{13}C$ NMR, and FT-IR. In addition, the physical properties of newly synthesized surfactants such as critical micelle concentration (CMC), surface tension and isoelectric point were measured. The stability characteristics of liposome systems including average particle sizes and zeta potentials were measured by varying pH and hydrocarbon chain lengths of an amine oxide surfactant. Effects of the pH and hydrocarbon chain length of an amine oxide surfactant on fluidity of a liposome membrane were also examined by measuring the deformability and the binding degree between the surfactant and liposome.

Morphology and Mechanical Properties through Hydroxyapatite Powder Surface Composite (Hydroxyapatite의 파우더 표면 복합화를 통한 형태 및 기계적 성질에 관한 연구)

  • Kye, Sung Bong;Park, Soo Nam
    • Applied Chemistry for Engineering
    • /
    • v.27 no.3
    • /
    • pp.299-306
    • /
    • 2016
  • In this study, new hydroxyapatite powder surface composites were investigated for protective effects against ultraviolet rays. Hydroxyapatite (HAp) is biocompatible and does not cause nebula phenomenon on skin. We investigated the surface modification of hydroxyapatite to improve UV block and skin usage. Dimethicone, lauroyl lysine, triethoxycaprylylsilane and silica were used as coating agents for the surface modification of HAp. To prepare the composite complex of the modified surface, the dimethicone, lauroyl lysine and triethoxycaprylylsilane were prepared by a dry process, and silica by a hydrothermal synthesis method. The HAp-silica was chosen as the best composite powder when measuring its sun protection levels. We investigated the characteristics of the surface of HAp-silica by SEM, particle size analyzer and energy dispersive spectrometry (EDS). Additionally, the stability in the formulation, UV block effect, and safety in BB creams were investigated. In conclusion, HAp-silica prepared by the modification of HAp complex surface improved the skin usage and UV block effect by enhancing the white cloudy phenomenon. These results indicate that HAp-silica may be used for UV block cosmetics.

Immobilization of Late Transition Metal Catalyst on the Amino-functionalized Silica and Its Norbornene Polymerization (아미노-기능화된 실리카 위 후전이 금속 촉매 담지 및 이를 이용한 노보넨 중합)

  • Pacia, Rose Mardie P.;Kim, So Hui;Lee, Jeong Suk;Ko, Young Soo
    • Applied Chemistry for Engineering
    • /
    • v.27 no.3
    • /
    • pp.313-318
    • /
    • 2016
  • In this study, an amorphous silica was functionalized with aminosilane, N-[(3-trimethoxysilyl)propyl]ethylenediamine (2NS) and the late transition metal catalysts including ($(DME)NiBr_2$ and $PdCl_2$(COD)) were subsequently immobilized on the functionalized amorphous silica for norbornene polymerization. Effects of the polymerization temperature, polymerization time, Al/Ni molar ratio, and type of co-catalyst on norbornene polymerization were investigated. Unsupported late transition metal catalysts did not show any activities for norbornene polymerization. However, the $SiO_2$/2NS/Ni catayst with MAO system, with increasing polymerization temperature, increased the polymerization activity and decreased the molecular weight of the polynorbornene (PNB). Furthermore, the catalyst when increasing polymerization temperature caused the decrease in both the polymerization activity and molecular weight of PNB. This confirmed that the stability of $SiO_2$/2NS/Ni at a high temperature was greater than that of $SiO_2$/2NS/Pd. Also the longer polymerization time resulted in the higher conversion of norbornene for both catalysts. When the Al : Ni molar ratio was 1000 : 1, the highest activity (15.3 kg-PNB/($({\mu}mol-Ni^*hr$)) but lowest molecular weight ($M_n$ = 124,000 g/mol) of PNB were achieved. Also $SiO_2$/2NS/Ni catalyst with borate/TEAL resulted in diminishing the polymerization activity and molecular weight of PNB with increasing the polymerization temperature.

The Preparation and Release Property of Alginate Microspheres Coated Gelatin-cinnamic Acid (젤라틴-신남산 접합체가 코팅된 알긴산나트륨 마이크로스피어의 제조 및 방출 특성)

  • Lee, Ju Hyup;Ma, Jin Yeul;Kim, Jin-Chul
    • Applied Chemistry for Engineering
    • /
    • v.24 no.5
    • /
    • pp.471-475
    • /
    • 2013
  • This study is about photosensitive microspheres prepared by coating alginate microspheres with gelatin-cinnamic acid conjugate. Firstly, alginate microspheres was prepared in water-in-oil (W/O) emulsion and then they were coated with gelatin- cinnamic acid conjugate. Herein, gelatin-cinnamic acid conjugate is obtained by the amidation between an amine group of gelatin and a carboxy group of cinnamic acid. Cinnamic acid is widely used as a photo-responsive material easy to dimerize and dedimeriz under UV irradiation at ${\lambda}$ = 254 nm and ${\lambda}$ = 365 nm, respectively. As shown in SEM-EDS, alginate was successfully coated with gelatin-ciannmic acid. By determining the absorbance of coated microspheres at 270nm, the amount of cinnamic acid per microspheres was 0.13/1. The SEM photos showed the size of coated microspheres is around $10{\mu}m$. And the degrees of dimerization and dedimerization were calculated to be 49% and 23% respectively. Then the release of FITC-dextran from the coated micrspheres was studied and release the degree was 42%. As a result, the coated microspheres have potential to be used as a photo-responsive drug carrier to delivery drugs.