Browse > Article
http://dx.doi.org/10.5352/JLS.2017.27.3.339

Enhanced Production of Astaxanthin in Paracoccus haeundaensis Strain by Physical and Chemical Mutagenesis  

Seo, Yong Bae (Department of Microbiology, College of Natural Sciences, Pukyong National University)
Jeong, Tae Hyug (Department of Marine and Fisheries Resources, College of Natural Sciences, Mokpo National University)
Choi, Seong Seok (Department of Microbiology, College of Natural Sciences, Pukyong National University)
Lim, Han Kyu (Department of Marine and Fisheries Resources, College of Natural Sciences, Mokpo National University)
Kim, Gun-Do (Department of Microbiology, College of Natural Sciences, Pukyong National University)
Publication Information
Journal of Life Science / v.27, no.3, 2017 , pp. 339-345 More about this Journal
Abstract
Carotenoids are natural lipid-soluble pigments, which are produced primarily by bacteria, algae, and plants. Many studies have focused on the identification, production, and utilization of natural sources of astaxanthin from algae, yeast, and crustacean byproducts as an alternative to the synthetic pigment, which is mostly used today. The aim of the present study was to identify a mutant of Paracoccus haeundaensis by exposure to UV and ethyl methanesulfonate (EMS). The mutant was then exposed to nutrient stress conditions to isolate an astaxanthin-hyperproducing strain, followed by characterization of the mutant. The survival rate decreased in accordance with an increase in the UV exposure time and an increase in the EMS concentration. A mutant of the original P. haeundaensis strain was identified that showed hyperproduction of astaxanthin following exposure to UV irradiation (20 min) and EMS treatment (0.4 M concentration). The optimal culture conditions for the PUE mutant were $25^{\circ}C$, pH 7-8, and 3% NaCl. The effects of various carbon and nitrogen sources on the growth and astaxanthin production of PUE were examined. The addition of 1% raffinose and 3% potassium nitrate influenced cell growth and astaxanthin production. The selected mutant exhibited an increase of 1.58 folds in astaxanthin content compared to initial wild type strain. A genetically stable mutant strain obtained using mutagen (UV irradiation and EMS treatment) may be a suitable candidate for further industrial scale production of astaxanthin.
Keywords
Astaxanthin; carotenoid; mutagen; Paracoccus haeundaensis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Castelblanco-Matiz, L. M., Barbachano-Torres, A., Ponce-Noyola, T., Ramos-Valdivia, A. C., Cerda Garcia-Rojas, C. M., Flores-Ortiz, C. M., Barahona-Crisostomo, S. K., Baeza-Cancino, M. E., Alcaino-Gorman, J. and Cifuentes-Guzman, V. H. 2015. Carotenoid production and gene expression in an astaxanthin-overproducing Xanthophyllomyces dendrorhous mutant strain. Arch. Microbiol. 197, 1129-39   DOI
2 Cheng, J., Li, K., Yang, Z., Zhou, J. and Cen, K. 2016. Enhancing the growth rate and astaxanthin yield of Haematococcus pluvialis by nuclear irradiation and high concentration of carbon dioxide stress. Bioresour. Technol. 204, 49-54   DOI
3 Choi, E. S. and An, G. H. 2003. Preparation of the red yeast, Xanthophyllomyces dendrorhous, as feed additive with increased availability of astaxanthin. Biotechnol. Lett. 25, 767-771.   DOI
4 Emmerstorfer-Augustin, A., Moser, S. and Pichler, H. 2016. Screening for improved isoprenoid biosynthesis in microorganisms. J. Biotechnol. 235, 112-120.   DOI
5 Glaeser, J. and Klug, G. 2005. Photo-oxidative stress in Rhodobacter sphaeroides: protective role of carotenoids and expression of selected genes. Microbiology 151, 1927-1938.   DOI
6 Helmut, S. and Stahl, W. 2003. Antioxidant activity of carotenoids. Mol. Aspects Med. 24, 345-351.   DOI
7 Higuera-Ciapara, I., Felix-Valenzuela, L. and Goycoolea, F. M. 2006. Astaxanthin: A Review of its chemistry and applications. Crit. Rev. Food Sci. Nutr. 46, 185-196.   DOI
8 Johnson, E. A. and Schroeder, W. A. 1996. Microbial carotenoids. Adv. Biochem. Eng. Biotechnol. 53, 119-178.
9 Misawa, N., Satomi, Y., Kondo, K., Yokoyama, A., Kajiwara, S., Saito, T., Ohtani, T. and Miki, W. 1995. Structure and functional analysis of marine bacterial carotenoid biosynthesis gene cluster and astaxanthin biosynthetic pathway proposed at the gene level. J. Bacteriol. 177, 6575-6584.   DOI
10 Lee, P. C. and Schmidt-Dannert, C. 2002. Metabolic engineering towards biotechnological production of carotenoids in microorganisms. Appl. Microbiol. Biotechnol. 60, 1-11.   DOI
11 Nelis, H. J. and De Leenheer, A. P. 1991. Microbial sources of carotenoid pig pigments used in foods and feeds. J. Appl. Bacteriol. 70, 181-191.   DOI
12 Nishino, H., Murakosh, M., Ii, T., Takemura, M., Kuchide, M., Kanazawa, M., Mou, X.Y., Wada, S., Masuda, M., Ohsaka, Y., Yogosawa, S., Satomi, Y. and Jinno, K. 2002. Carotenoids in cancer chemoprevention. Cancer Metastasis Rev. 21, 257-264   DOI
13 Lee, J. H., Seo, Y. B., Jeong, S. Y., Nam, S. W. and Kim, Y. T. 2007. Functional analysis of combinations in astaxanthin biosynthesis genes from Paracoccus haeundaensis. Biotechnol. Bioprocess Eng. 54, 1699-1702.
14 Wang, N., Guan, B., Kong, Q., Sun, H., Geng, Z. and Duan, L. 2016. Enhancement of astaxanthin production from Haematococcus pluvialis mutants by three-stage mutagenesis breeding. J. Biotechnol. 236, 71-77.   DOI
15 Zhang, Y., He, M., Zou, S., Fei, C., Yan, Y., Zheng, H., Rajper, A. A. and Wang, C. 2016. Breeding of high biomass and lipid producing Desmodesmus sp. by Ethylmethane sulfonate-induced mutation. Bio. Tech. 207, 268-275.   DOI
16 Zhao, Y., Shang, M., Xu, J. W., Zhao, P., Li, T. and Yu, X. 2015. Enhanced astaxanthin production from a novel strain of Haematococcus pluvialis using fulvic acid. Process. Biochem. 50, 2072-2077.   DOI
17 An, G. H., Bielich J., Auerbach, R. and Johnson, E. A. 1991. Isolation and characterization of carotenoid hyperproducing mutants of yeast by flow cytometry and cell sorting. Bio. Tech. 9, 70-73.
18 Kobayashi, M., Kakizono, T. and Nagai, S. 1993. Enhanced carotenoid biosynthesis by oxidative stress in acetate-induced cyst cells of a green unicellular alga, Haematococcus pluvialis. Appl. Environ. Microbiol. 59, 867-873.
19 Krubasik, P. and Sandmann, G. 2000. A carotenogenic gene cluster from Brevibacterium linens with novel lycopene cyclase genes involved in the synthesis of aromatic carotenoids. Mol. Gen. Genet. 263, 423-432.   DOI
20 Lee, J. H., Nam, S. W., Choi, T. J., Lee, W. J. and Kim, Y. T. 2004. Paracoccus haeundaensis sp. nov., a gram-negative, halophilic, astaxanthin-producing bacterium. Int. J. Syst. Evol. Microbiol. 54, 1699-1702.   DOI
21 Sun, N. K., Lee, S. H. and Song, K. B. 2004. Characterization of a carotenoid-hyperproducing yeast mutant isolated by low-dose gamma irradiation. Int. J. Food Microbiol. 94, 263-267.   DOI
22 Pollmann, H., Breitenbach, J. and Sandmann, G. 2017. Engineering of the carotenoid pathway in Xanthophyllomyces dendrorhous leading to the synthesis of zeaxanthin. Appl. Microbiol. Biotechnol. 101. 103-111.   DOI
23 Sandesh Kamath, B., Vidhyavathi, R., Sarada, R. and Ravishankar, G. A. 2008. Enhancement of carotenoids by mutation and stress induced carotenogenic genes in Haematococcus pluvialis mutants. Bioresour. Technol. 99, 8667-8673.   DOI
24 Smith, T. A. D. 1998. Carotenoids and cancer: prevention and potential therapy. Br. J. Biomed. Sci. 55, 268-275.
25 Vershinin, A. 1999. Biological functions of carotenoids-diversity and evolution. Biofactors 10, 99-104.   DOI
26 Wang, C. C., Ding, S., Chiu, K. H., Liu, W. S., Lin, T. J. and Wen, Z. H. 2016. Extract from a mutant Rhodobacter sphaeroides as an enriched carotenoid source. Food Nutr. Res. 60, 29580.   DOI
27 Wachi, Y., Burgess, J. G., Iwamoto, K., Yamada, N., Nakamura, N. and Matsunga, T. 1995. Effect of Ultraviolet A (UV-A) light on growth, photosynthetic acitivity and production of biopterin glucoside by the marine UV-A resistant cyanobacterium Oscillatoria sp. Biochemica. Biophysica. Acta. 124, 165-168.