• Title/Summary/Keyword: 화학합성

Search Result 4,108, Processing Time 0.023 seconds

Effect of Addition of Pentaerythritol Triacrylate and Silane Coupling Agents on the Properties of Waterborne Polyurethane (Pentaerythritol Triacrylate와 실란커플링제의 첨가가 수분산 폴리우레탄의 물성에 미치는 영향)

  • Shin, Yong Tak;Hong, Min Gi;Kim, Byung Suk;Lee, Won Ki;Yoo, Byung Won;Lee, Myung Goo;Song, Ki Chang
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.191-197
    • /
    • 2012
  • Acrylic terminated polyurethane prepolymers were synthesized by capping the NCO groups of polyurethane prepolymers, prepared from isophorone diisocyanate (IPDI), polycarbonate diol (PCD) and dimethylol propionic acid (DMPA), with pentaerythritol triacrylate (PETA). Subsequently, silylated acrylic terminated prepolymers were prepared by capping the NCO groups of acrylic terminated polyurethane prepolymers with different types of silane coupling agents, glycidoxypropyl trimethoxysilane (GPTMS) or aminopropyl triethoxysilane (APS). The average particle size of pure waterborne polyurethane solution, measured by the dynamic light scattering method, was increased from 14.3 nm to 208.6 nm by adding PETA and APS. Also, the coating film of silylated acrylic terminated waterborne polyurethane showed better abrasion resistance and pencil hardness than that of pure waterborne polyurethane.

Preparation of Waterborne Polyurethane-Acrylic Hybrid Solutions from Different Types of Acrylate Monomers (아크릴 단량체의 종류 변화에 의한 수분산 폴리우레탄-아크릴 혼성 용액의 제조)

  • Kim, Byung Suk;Hong, Min Gi;Yoo, Byung Won;Lee, Myung Goo;Lee, Woo Il;Song, Ki Chang
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.410-416
    • /
    • 2012
  • Waterborne polyurethane dispersions (PUD) were synthesized from isophorone diisocyanate (IPDI), polycarbonate diol (PCD) and dimethylol propionic acid (DMPA) as starting materials. Subsequently, polyurethane-acrylic hybrid solutions were prepared by reacting the PUD with different types of acrylate monomers, such as HEMA (2-hydroxyethyl methacrylate):MMA (methyl methacrylate), HEMA:BA (butylacrylate), HEMA:BMA (butyl methacrylate), HEMA:HEA (2-hydroxyethyl acrylate), HEMA:PETA (pentaerytritol triacrylate) mixture. Also, the effects of acrylate types on the chemical resistance and the abrasion resistance of polyurethane-acrylic hybrid solutions were investigated. The test results showed that the HEMA:MMA mixture had the strongest chemical resistance, while the HEMA:PETA mixture had the strongest abrasion resistance among several types of acrylate mixtures.

Preparation and Properties of Aniline Terminated Waterborne Polyurethane/Multi-walled Carbon Nanotube Composite Coating Solutions (Aniline Terminated Waterborne Polyurethane/Multi-walled Carbon Nanotube 복합 코팅 용액의 제조 및 물성)

  • Hong, Min Gi;Kim, Byung Suk;Song, Ki Chang
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.403-409
    • /
    • 2012
  • Polyurethane prepolymers were prepared from poly (carbonate diol), isophrone diisocyanate, and dimethylol propionic acid. Then, aniline terminated waterborne polyurethane dispersion (ATWPUD) was synthesized by capping aniline on the NCO group of the prepolymer. Subsequently, ATWPUD was mixed with multi-walled carbon nanotube (MWCNT) to yield coating solutions, and the mixture was coated on the polycarbonate substrate. The surface resistance ($10^{7.6}{\sim}10^{7.7}{\Omega}/cm^2$) of coating films from ATWPUD showed better conducting properties than that ($10^{10.9}{\Omega}/cm^2$) from pure waterborne polyurethane dispersion (WPUD) when MWCNT was mixed. Also, the surface resistance of coating films was increased, but the pencil hardness and adhesion were decreased with increasing the amount of MWCNT added in the ATWPUD.

Development of a Synthetic Process for N-Cyclohexylmaleiamic Acid Isobutyl Ester (N-사이크로헥실말레아민산 이소부틸 에스테르의 제조 공정 개발)

  • Moon, Bu-Hyun;Ju, Chang-Sik
    • Korean Chemical Engineering Research
    • /
    • v.51 no.5
    • /
    • pp.545-549
    • /
    • 2013
  • For the purpose of development of effective synthetic process of CHMI, a series of experiments were preformed on the preparation of CHMAIE, the intermediate of CHMI. For the first step, CHMA was synthesized by dropwise mixing of cyclohexylamine with maleic anhydride in toluene and 98.2% of theoretical CHMA was obtained by precipitation at $10^{\circ}C$ for 2 hours. The optimum reaction temperature of the esterfication, preparation reaction of CHAMIE from CHMA, was $68^{\circ}C$, and equilibrium conversion at optimum temperature was 98.5%. Equilibrium reaction time decreased with reaction temperature, and 4 hours was taken to reach equilibrium at optimum reaction temperature. Toluene in the final reaction product could be recovered by vacuum distillation. The recovery of toluene was increased with distillation temperature and 98% of toluene could be recovered at $55^{\circ}C$.

SAFT Equation of State for Vapor-liquid Phase Equilibria of Associating Fluid Mixtures (SAFT 상태 방정식과 회합성 유체 혼합물의 기액 상평형)

  • Chang, Jaeeon
    • Korean Chemical Engineering Research
    • /
    • v.56 no.5
    • /
    • pp.607-624
    • /
    • 2018
  • We review SAFT equation of state (EOS) which is based on TPT theory and statistical-mechanical principles, and confirm that it can be used as a useful tool to predict vapor-liquid phase equilibria of associating fluid mixtures. We examine theoretical structure of PC-SAFT EOS in great detail, and then assess the applicability and performance of the EOS while applying it to various mixtures containing nonpolar components, polar components and associating components in a stage-wise manner. In contrast to the conventional engineering EOS, PC-SAFT EOS can accurately predict nonideal behaviors of those mixtures without using semi-empirical binary interaction parameter. This is because the SAFT theory is based on a rigorous theoretical framework at molecular level which effectively accounts for various intermolecular interactions, and it thus provides substantial benefits in applying the SAFT EOS to complex thermodynamic phenomena of multi-component mixtures.

Enhancing Production Rate of Emulsion via Parallelization of Flow-Focusing Generators (유동-집속 생성기의 병렬화를 통한 에멀젼 생산속도 향상)

  • Jeong, Heon-Ho
    • Korean Chemical Engineering Research
    • /
    • v.56 no.5
    • /
    • pp.761-766
    • /
    • 2018
  • Droplet-based microfluidic device has led to transformational new approaches in various applications including materials synthesis and high-throughput screening. However, efforts are required to enhance the production rate to industrial scale because of low production rate in a single droplet generator. In here, we present a method for enhancing production rate of monodisperse droplets via parallelization of flow-focusing generators. For this, we fabricated a three-dimensional monolithic elastomer device (3D MED) that has the 3D channel structures in a single layer, using a double-sided imprinting method. We demonstrated that the production rate of monodisperse droplet is increased by controlling the flow rate of continuous and dispersed phases in 3D MED with 8 droplet generators. Thus, we anticipate that this microfluidic system will be used in wide area including microparticle synthesis and screening system via encapsulation of various materials and cells in monodisperse droplets.

pH-Sensitive Dynamic Swelling Behavior of Glucose-containing Anionic Hydrogels (글루코스를 함유한 음이온 하이드로젤의 pH 감응성 동적 팽윤거동)

  • Kim, Bumsang
    • Korean Chemical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.299-304
    • /
    • 2005
  • There have been many efforts to use anionic hydrogels as oral protein delivery carriers due to their pH-responsive swelling behavior. The dynamic swelling behavior of poly(methacrylic acid-co-methacryloxyethyl glucoside) [P(MAA-co-MEG)] hydrogels was investigated to determine the mechanism of water transport through these anionic hydrogels. The exponential relation $M_t/M_{\infty}=kt^n$ was used to calculate the exponent, n, describing the Fickian or non-Fickian behavior of swelling polymer networks. The mechanism of water transport through these gels was significantly affected by the pH of the swelling medium. The mechanism of water transport became more relaxation-controlled in the swelling medium of pH 7.0 that was higher than the $pK_a$ of the gels. Experimental results of time-dependent swelling behavior of the gels were analyzed with several mathematical models. Using ATR-FTIR spectroscopy, the effect of ionization of the carboxylic acid groups in the polymer networks on the water transport mechanism was investigated.

Comprehending Polymer-Clay Nanocomposites and Their Future Works (고분자-점토 나노복합체 이해와 향후 연구 방향)

  • Choi, Yeong Suk;Chung, In Jae
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.23-36
    • /
    • 2008
  • Polymer-clay nanocomposites, a novel organic-inorganic hybrid, attract much attention from both scientific fields and engineering fields due to their balanced improvements in mechanical properties as well as diffusion behaviors, including flame-retarding and barrier properties, with small amounts of clay. Preparation of polymer-clay nanocomposites, summarized as a process for uniform dispersion of hydrophilic layered clays in hydrophobic polymer matrixes, includes several technologies and scientific phenomena, such as surface-modifications of clay layers, physical properties of clays in liquids and dried states, polymer synthesis, polymer rheology, behaviors of polymer solutions/or monomers in the confined geometry, mechanical properties of polymers and clays. To comprehend complicated physical/chemical phenomena involved in the fabrication of nanocomposites, we reviewed physical properties of clays, structures of clays in nanocomposites, characterization of nanocomposites, the relation between morphology and physical property of nanocomposites, surveyed recent research trends, and then suggested a few strategies or methods for fabrication of nanocomposites reflecting future research directions.

Colloidal Engineering for Nano-Bio Fusion Research (Nano-Bio 융합 연구를 위한 콜로이드 공학)

  • Moon, Jun Hyuk;Yi, Gi-Ra;Lee, Sang-Yup;So, Jae-Hyun;Kim, Young-Seok;Yoon, Yeo-Kyun;Cho, Young-Sang;Yang, Seung-Man
    • Korean Chemical Engineering Research
    • /
    • v.46 no.4
    • /
    • pp.647-659
    • /
    • 2008
  • Colloids are a heterogeneous system in which particles of a few nanometers to hundreds micrometers in size are finely dispersed in liquid medium, but show homogeneous properties in macroscopic scale. They have attracted much attention not only as model systems of natural atomic and molecular self-assembled structures but also as novel structural materials of practical applications in a wide range of areas. In particular, recent advances in colloidal science have focused on nano-bio materials and devices which are essential for drug discovery and delivery, diagnostics and biomedical applications. In this review, first we introduce nano-bio colloidal systems and surface modification of colloidal particles which creates various functional groups. Then, various methods of fabrication of colloidal particles using holographic lithography, microfluidics and virus templates are discussed in detail. Finally, various applications of colloids in metal inks, three-dimensional photonic crystals and two-dimensional nanopatterns are also reviewed as representative potential applications.

A Kinetic Study of Allylchloride Epoxidation using Titanium Silicalite-1 Catalyst (Titanium Silicalite-1 촉매를 이용한 Allylchloride 에폭시화 반응: 속도론적 고찰)

  • Yang, Seung-Tae;Choi, Jung-Sik;Kwon, Young-Chul;Lee, Sang-Wook;Ahn, Wha-Seung
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.142-146
    • /
    • 2008
  • Titanium silicalite-1 catalyst was prepared using a $SiO_2-TiO_2$ xerogel and applied to allylchloride (ALC) epoxidation by $H_2O_2$ as oxidant in a batch reactor. The reaction temperature was varied from 25 to $55^{\circ}C$, and the concentrations of ALC and $H_2O_2$ were changed from 0.2 to 3 M and from 0.2 to 1.5 M, respectively. The kinetic data obtained were applied to the power rate law, Eley-Rideal, and a Langmuir-Hinshelwood model, and power rate law fits the experimental data best. Activation energy was 27.9 kJ/mol, and the reaction orders with respect to $H_2O_2$ and ALC were determined to be 0.41 and 0.52, respectively.