Comprehending Polymer-Clay Nanocomposites and Their Future Works

고분자-점토 나노복합체 이해와 향후 연구 방향

  • Choi, Yeong Suk (Department of Chemical and Biomolecular Engineering, KAIST) ;
  • Chung, In Jae (Department of Chemical and Biomolecular Engineering, KAIST)
  • 최용석 (한국과학기술원 생명화학공학과) ;
  • 정인재 (한국과학기술원 생명화학공학과)
  • Received : 2007.12.15
  • Accepted : 2007.12.20
  • Published : 2008.02.28

Abstract

Polymer-clay nanocomposites, a novel organic-inorganic hybrid, attract much attention from both scientific fields and engineering fields due to their balanced improvements in mechanical properties as well as diffusion behaviors, including flame-retarding and barrier properties, with small amounts of clay. Preparation of polymer-clay nanocomposites, summarized as a process for uniform dispersion of hydrophilic layered clays in hydrophobic polymer matrixes, includes several technologies and scientific phenomena, such as surface-modifications of clay layers, physical properties of clays in liquids and dried states, polymer synthesis, polymer rheology, behaviors of polymer solutions/or monomers in the confined geometry, mechanical properties of polymers and clays. To comprehend complicated physical/chemical phenomena involved in the fabrication of nanocomposites, we reviewed physical properties of clays, structures of clays in nanocomposites, characterization of nanocomposites, the relation between morphology and physical property of nanocomposites, surveyed recent research trends, and then suggested a few strategies or methods for fabrication of nanocomposites reflecting future research directions.

고분자-점토 나노복합체는 소량의 점토를 사용하여 큰 기계적 물성향상을 나타내 많은 관심을 끌고 있는 분야이다. 층상 구조를 갖고 있는 점토를 고분자 matrix에 분산하는 과정으로 요약할 수 있는 고분자-점토 나노복합체 제조는 친수성 점토 표면을 조절하는 기술, 점토의 물리적 성질을 이용하는 무기재료에 관한 지식, 고분자 합성, 고분자 유변학, 고분자 용액 거동, 기계적 물성이 복합적으로 작용하는 계이다. 이러한 복잡성을 설명하기 위해, 이 총설에서 점토 종류와 그 특성을 설명하였다. 또한 점토 특성과 고분자-점토 나노복합체 제조 방법의 연관성에 대해 설명하고, 제조된 복합체의 구조 분석과 방법에 대해 설명하였다. 그리고 복합체의 특징적인 물성을 분류한 후 그 물성과 복합체의 구조를 연관하여 살펴보았다. 마지막으로 최근의 연구 경향과 향후 연구 경향을 제시하였다.

Keywords

References

  1. Kojima, Y., Usuki, A., Kawasumi, M., Okada, A., Kurauchi, T. and Kamigaito, O., "Synthesis of Nylon 6-Clay Hybrid by Montmorillonite Intercalated with $\varepsilon$-Caprolactam," J. Polym. Sci., Part A: Polym. Chem., 31(4), 983-986(1993). https://doi.org/10.1002/pola.1993.080310418
  2. Kojima, Y., Usuki, A., Kawasumi, M., Okada, A., Kurauchi, T. and Kamigaito, O., "One-Pot Synthesis of Nylon 6-Clay Hybrid," J. Polym. Sci., Part A: Polym. Chem., 31(7), 1755-1758(1993). https://doi.org/10.1002/pola.1993.080310714
  3. Greenland, D. J., "Adsorption of Polyvinyl Alcohols by Montmorillonite," J. Colloid Sci., 18(7), 647-664(1963). https://doi.org/10.1016/0095-8522(63)90058-8
  4. Friedlander, H. Z. and Frink, C. R., "Organized Polymerization III. Monomers Intercalated in Montmorillonite," J. Polym. Sci., Part B: Polym. Lett., 2(4), 475-479(1964). https://doi.org/10.1002/pol.1964.110020435
  5. Blumstein, A., "Polymerization of Adsorbed Monolayers. I. Preparation of the Clay-Polymer Complex," J. Polym. Sci., Part A: Polym. Chem., 3(7), 2653-2664(1965).
  6. Blumstein, A., "Polymerization of Adsorbed Monolayers. II. Thermal Degradation of the Inserted Polymer," J. Polym. Sci., Part A: Polym. Chem., 3(7), 2665-2672(1965).
  7. Blumstein, A., Billmeyer, JR., F. W., "Polymerization of Adsorbed Monolayers. III. Preliminary Structure Studies in Dilute Solution of the Inserted Polymers," J. Polym. Sci., Part A-2: Polym. Phys., 4(3), 465-474(1966). https://doi.org/10.1002/pol.1966.160040315
  8. Blumstein, A., Malhotra, S. L. and Watterson, A. C., "Polymerization of Monolayers. V. Tacticity of the Insertion Poly(methyl Methacrylate)," J. Polym. Sci., Part A-2: Polym. Phys., 8(9), 1599-1615(1970). https://doi.org/10.1002/pol.1970.160080913
  9. Blumstein, A., Parikh, K. K. and Malhotra, S. L., "Polymerization of Monolayers. VI. Influence of the Nature of the Exchangeable Ion on the Tacticity of Insertion Poly(methyl methacrylate)," J. Polym. Sci., Part A-2: Polym. Phys., 9(9), 1681-1691(1971). https://doi.org/10.1002/pol.1971.160090910
  10. Malhotra, S. L., Parikh, K. K. and Blumstein, A., "Polymerization of Monolayers VII. Influence of the Exchangeable Cation on the Polymerization Rate of Methylmethacrylate Monolayers Adsorbed on Montmorillonite," J. Colloid Interface Sci., 41(2), 318-327(1972). https://doi.org/10.1016/0021-9797(72)90117-8
  11. Murray, H. H., "Traditional and New Applications for Kaolin, Smectite, and Palygorskite: a General Overview," Appl. Clay Sci., 17(5-6), 207-221(2000). https://doi.org/10.1016/S0169-1317(00)00016-8
  12. Pinnavaia, T. J., "Intercalated Clay Catalysts," Science, 220(4595), 365-371(1983). https://doi.org/10.1126/science.220.4595.365
  13. Giese, R. F. and van Oss, C., J. Colloid and Surface Properties of Clays and Related Minerals, Marcel Dekker, New York(2002).
  14. Vaia, R. A., Teukolsky, R. K. and Giannelis, E. P., "Interlayer Structure and Molecular Environment of Alkylammonium Layered Silicates," Chem. Mater., 6(7), 1017-1022(1994). https://doi.org/10.1021/cm00043a025
  15. Wang, K. H., Choi, M. H., Koo, C. M., Choi, Y. S. and Chung, I. J., "Synthesis and Characterization of Maleated Polyethylene/Clay Nanocomposites," Polymer, 42(24), 9819-9826(2001). https://doi.org/10.1016/S0032-3861(01)00509-2
  16. Choi, Y. S., Ham, H. T. and Chung, I. J., "Effect of Monomers on the Basal Spacing of Sodium Montmorillonite and the Structures of Polymer-Clay Nanocomposites," Chem. Mater., 16(13), 2522-2529(2004). https://doi.org/10.1021/cm0348601
  17. Yano, K., Usuki, A., Okada, A., Kurauchi, T. and Kamigaito, O., "Synthesis and Properties of Polyimide-Clay Hybrid," J. Polym. Sci., Part A: Polym. Chem., 31(10), 2493-2498(1993). https://doi.org/10.1002/pola.1993.080311009
  18. Carrado, K. A. and Xu, L., "In Situ Synthesis of Polymer-Clay Nanocomposites from Silicate Gels," Chem. Mater., 10(5), 1440- 1445(1998). https://doi.org/10.1021/cm970814n
  19. Carrado, K. A., "Synthetic Organo- and Polymer-Clays: Preparation, Characterization, and Materials Applications," Appl. Clay Sci., 17(1-2), 1-23(2000). https://doi.org/10.1016/S0169-1317(00)00005-3
  20. Dong, W., Liu, Y., Zhang, X., Gao, J., Huang, F., Song, Z., Tan, B. and Qiao, J., "Preparation of High Barrier and Exfoliated- Type Nylon-6/Ultrafine Full-Vulcanized Powdered Rubber/Clay Nanocomposites," Macromolecules, 38(11), 4551-4553(2005). https://doi.org/10.1021/ma0504015
  21. Bragancüa, F. do C., Valadares, L. F., Leite, C. A. de P. and Galembeck, F., "Counter ion Effect on the Morphological and Mechanical Properties of Polymer-Clay Nanocomposites Prepared in an Aqueous Medium," Chem. Mater., 19(13), 3334-3342 (2007). https://doi.org/10.1021/cm070467+
  22. Rao, Y. Q. and Pochan J. M., "Mechanics of Polymer-Clay Nanocomposites," Macromolecules, 40(2), 290-296(2007). https://doi.org/10.1021/ma061445w
  23. Vaia, R. A. and Giannelis, E. P., "Polymer Melt Intercalation in Organically-Modified Layered Silicates: Model Predictions and Experiment," Macromolecules, 30(25), 8000-8009(1997). https://doi.org/10.1021/ma9603488
  24. Koo, C. M., Kim, S. O. and Chung, I. J., "Study on Morphology Evolution, Orientational Behavior, and Anisotropic Phase Formation of Highly Filled Polymer-Layered Silicate Nanocomposites," Macromolecules, 36(8), 2748-2757(2003). https://doi.org/10.1021/ma021377n
  25. Wang, K. H., Choi, M. H., Koo, C. M., Xu, M., Chung, I. J., Jang, M. C., Choi, S. W. and Song, H. H., "Morphology and Physical Properties of Polyethylene/silicate Nanocomposite Prepared by Melt Intercalation," J. Polym. Sci. Part B: Polym. Phys., 40(14), 1454-1463(2002). https://doi.org/10.1002/polb.10201
  26. Wang, K. H., Xu, M., Choi, Y. S. and Chung, I. J., "Effect of Aspect Ratio of Clay on Melt Extensional Process of Maleated Polyethylene/Clay Nanocomposites," Polym. Bull., 46(6), 499-505 (2001). https://doi.org/10.1007/s002890170038
  27. Lan, T. and Pinnavaia, T. J., "Clay-Reinforced Epoxy Nanocomposites," Chem. Mater., 6(12), 2216-2219(1994). https://doi.org/10.1021/cm00048a006
  28. Choi, Y. S., Wang, K. H., Xu, M. and Chung, I. J., "Synthesis of Exfoliated Polyacrylonitrile/Na-MMT Nanocomposites via Emulsion Polymerization," Chem. Mater., 14(7), 2936-2939(2002). https://doi.org/10.1021/cm0116020
  29. Yano, K., Usuki, A., Okada, A., Kurauchi, T. and Kamigaito, O., "Synthesis and Properties of Polyimide-Clay Hybrid," J. Polym. Sci., Part A: Polym. Chem., 31(10), 2493-2498(1993). https://doi.org/10.1002/pola.1993.080311009
  30. Gilman, J. W., Jackson, C. L., Morgan, A. B., Harris, R., Jr., Manias, E., Giannelis, E. P., Wuthenow, M., Hilton, D. and Phillips, S. H. "Flammability Properties of Polymer-Layered-Silicate Nanocomposites. Polypropylene and Polystyrene Nanocomposites," Chem. Mater., 12(7), 1866-1873(2000). https://doi.org/10.1021/cm0001760
  31. Zanetti, M., Camino, G., Canavese, D., Morgan, A. B., Lamelas, F. J. and Wilkie, C. A., "Fire Retardant Halogen-Antimony-Clay Synergism in Polypropylene Layered Silicate Nanocomposites," Chem. Mater., 14(1), 189-193(2002). https://doi.org/10.1021/cm011124t
  32. Darder, M., Aranda, P. and Ruiz-Hitzky, E., "Bionanocomposites: A New Concept of Ecological, Bioinspired, and Functional Hybrid Materials," Adv. Mater., 19(10), 1309-1319(2007). https://doi.org/10.1002/adma.200602328
  33. Mehta, G., Kiel, M. J., Lee, J. W., Kotov, N., Linderman, J. J. and Takayama, S., "Polyelectrolyte-Clay-Protein Layer Films on Microfluidic PDMS Bioreactor Surfaces for Primary Murine Bone Marrow Culture," Adv. Funct. Mater., 17(15), 2701-2709 (2007). https://doi.org/10.1002/adfm.200700016
  34. Rao, Y.-Q., "Gelatine-Clay Nanocomposites of Improved Properties," Polymer, 48(18), 5369-5375(2007). https://doi.org/10.1016/j.polymer.2007.06.068
  35. Lai, M.-C., Chang, K.-C., Yeh, J.-M., Liou, S.-J., Hsieh, M.-F. and Chang, H.-S., "Advanced Environmentally Friendly Anticorrosive Materials Prepared from Water-based Polyacrylate/ $Na^+$-MMT Clay Nanocomposite Latexes," Eur. Polym. J., 43(10), 4219-4228(2007). https://doi.org/10.1016/j.eurpolymj.2007.05.008
  36. Kim, T. K., Kang, M.-S., Choi, Y. S., Kim, H. K., Lee, W. -M., Chang, H. and Seung, D.-Y., "Preparation of Nafion-sulfonated Clay Nanocomposite Membrane for Direct Menthol Fuel Cells Via a Film Coating Process," J. Power Sources, 165(1), 1-8(2007). https://doi.org/10.1016/j.jpowsour.2006.11.055
  37. Chuang, S.-W., Hsu, S. L.-C. and Hsu, C.-L., "Synthesis and Properties of Fluorine-containing Polybenzimidazole/montmorillonite Nanocomposite Membranes for Direct Methanol Fuel Cell Applications," J. Power Sources, 168(1), 172-177(2007). https://doi.org/10.1016/j.jpowsour.2007.03.021
  38. Choi, M. H., Chung, I. J. and Lee, J. D., "Morphology and Curing Behaviors of Phenolic Resin-Layered Silicate Nanocomposites Prepared by Melt Intercalation," Chem. Mater., 12(10), 2977- 2983(2000). https://doi.org/10.1021/cm000227t
  39. Byun, H. Y., Choi, M. H. and Chung, I. J., "Synthesis and Characterization of Resol Type Phenolic Resin/Layered Silicate Nanocomposites," Chem. Mater., 13(11), 4221-4226(2001). https://doi.org/10.1021/cm0102685
  40. Bockstaller, M. R., Mickiewicz, R. A. and Thomas, E. L., "Block Copolymer Nanocomposites: Perspectives for Tailored Functional Materials," Adv. Mater., 17(11), 1331-1349(2005). https://doi.org/10.1002/adma.200500167
  41. Huang, W. and Han, C. D., "Dispersion Characteristics and Rheology of Organoclay Nanocomposites Based on a Segmented Main-Chain Liquid-Crystalline Polymer Having Pendent Pyridyl Group," Macromolecules, 39(1), 257-267(2006). https://doi.org/10.1021/ma051470m