• Title/Summary/Keyword: 화학적 도구

Search Result 165, Processing Time 0.021 seconds

Simulation of flue gas treatment section in RDF combustion process using Aspen Plus (Aspen Plus를 이용한 RDF 소각시 발생하는 배가스 처리 공정 모사)

  • Lee, Ju-Ho;Jung, Moon-Hun;Kwon, Young-Hyun;Kim, Min-Choul;Lee, Gang-Woo;Shon, Byung-Hyun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.05a
    • /
    • pp.848-850
    • /
    • 2009
  • 화석에너지 고갈로 인한 유가 상승으로 폐기물 에너지화가 이슈화 되고 있다. 폐기물 고형 연료 RDF는 에너지 문제를 해결하기위한 대안 중 하나로 수송성, 저장성, 연소안정성이 우수하나 환경오염 물질의 발생이 문제가 된다. 이러한 오염물질을 처리하기 위한 배가스 오염 물질처리를 위한 plant 설비 비용과 시간이 많이 투자된다. Aspen plus는 mass energy balance와 화학적평형, 열역학을 이용하여 공정 모사를 할 수 있는 프로그램으로 검증되었다. RDF의 삼성분, 원소분석, 발열량을 입력을 통해 HCl, SOx, NOx, CO의 배출량을 예측하고 이에 맞는 SNCR, SDA 등과 같은 반응기를 적용 하므로써 다양한 배가스 처리를 모사 할 수 있다. NOx를 제어하기위에 urea주입과 SOx와 HCl을 제거하기 위한 CaO를 주입을 모사 하므로써 실제 운영 적용 전 단계에 역할로 유용한 도구로 판단된다.

  • PDF

SAFT Equation of State for Vapor-liquid Phase Equilibria of Associating Fluid Mixtures (SAFT 상태 방정식과 회합성 유체 혼합물의 기액 상평형)

  • Chang, Jaeeon
    • Korean Chemical Engineering Research
    • /
    • v.56 no.5
    • /
    • pp.607-624
    • /
    • 2018
  • We review SAFT equation of state (EOS) which is based on TPT theory and statistical-mechanical principles, and confirm that it can be used as a useful tool to predict vapor-liquid phase equilibria of associating fluid mixtures. We examine theoretical structure of PC-SAFT EOS in great detail, and then assess the applicability and performance of the EOS while applying it to various mixtures containing nonpolar components, polar components and associating components in a stage-wise manner. In contrast to the conventional engineering EOS, PC-SAFT EOS can accurately predict nonideal behaviors of those mixtures without using semi-empirical binary interaction parameter. This is because the SAFT theory is based on a rigorous theoretical framework at molecular level which effectively accounts for various intermolecular interactions, and it thus provides substantial benefits in applying the SAFT EOS to complex thermodynamic phenomena of multi-component mixtures.

The identification of Raman spectra by using linear intensity calibration (선형 강도 교정을 이용한 라만 스펙트럼 인식)

  • Park, Jun-Kyu;Baek, Sung-June;Park, Aaron
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.32-39
    • /
    • 2018
  • Raman spectra exhibit differences in intensity depending on the measuring equipment and environmental conditions even for the same material. This restricts the pattern recognition approach of Raman spectroscopy and is an issue that must be solved for the sake of its practical application, so as to enable the reusability of the Raman database and interoperability between Raman devices. To this end, previous studies assumed the existence of a transfer function between the measurement devices to obtain a direct spectral correction. However, this method cannot cope with other conditions that cause various intensity distortions. Therefore, we propose a classification method using linear intensity calibration which can deal with various measurement conditions more flexibly. In order to evaluate the performance of the proposed method, a Raman library containing 14033 chemical substances was used for identification. Ten kinds of chemical Raman spectra measured using three different Raman spectroscopes were used as the experimental data. The experimental results show that the proposed method achieves 100% discrimination performance against the intensity-distorted spectra and shows a high correlation score for the identified material, thus making it a useful tool for the identification of chemical substances.

Change of Science Teachers' Perceptions About the Atmosphere Composition of Molecules with Different Masses (서로 다른 질량을 가진 분자들로 이루어진 대기의 조성에 대한 과학교사들의 인식 변화)

  • Yoo, Seunggyun;Paik, Seoung-Hey
    • Journal of the Korean Chemical Society
    • /
    • v.62 no.4
    • /
    • pp.288-298
    • /
    • 2018
  • In this study, we surveyed pre- and post-perceptions of fourteen science teachers related to the atmosphere composition of molecules with different masses by the developed test. As a result of the test, the teachers were classified into two types of thoughts; One of them is considered the atmosphere to be a homogeneous solution, and the other is a thought that the composition ratio of the atmosphere was not homogeneous considering the different weights of particles. The two types were reclassified into three categories; one of them is considering large gravity effect, another is considering small gravity effect, and the other is considering medium scale gravity effect. Total six types of thoughts were found from the pre-test. After introducing crosscutting concepts which are related to the composition of atmosphere. The teachers discussed the phenomena with the molecular motion by weights of atoms and temperature, the homogeneity of the solution of air in chemistry domain. They also discussed with the relationship between mass and gravity and distance in physics domain. And the discussion included distribution of the atmosphere, convection phenomena, etc. After the discussion, the teachers changed their pre-conceptions to post-concoctions considering combined perspectives of gravity, mass, temperature, altitude etc. Through these changes, we are able to confirm the importance of crosscutting concepts covered in various disciplines. In the integrated science, we should help teachers to provide students with these types of thinking in order to form a coherent world-view and to carry out inquiry thinking as an intellectual tool.

Spectroscopic Comparison of Photo-oxidation of Outside and Inside of Hair by UVB Irradiation (자외선B 조사에 의한 모발 외부와 내부의 광산화에 관한 분광학적 비교)

  • Ha, Byung-Jo
    • Applied Chemistry for Engineering
    • /
    • v.31 no.2
    • /
    • pp.220-225
    • /
    • 2020
  • Hair is made of proteins containing various amino acids. Ultraviolet (UV) radiation is believed to be responsible for the most damaging effects of sunlight, and also plays an important role in hair aging. The purpose of this study was to investigate the changes in morphological and chemical structures after ultraviolet B (UVB) irradiation of human hair. The UVB-irradiated hair showed characteristic morphological and structural changes, compared to those of the normal hair. The result from a scanning electron microscope (SEM) equipped with an energy dispersive X-ray diffractometer (EDX) showed that the scale of UV-irradiated hair appeared to be rough and the amount of oxygen element was higher than that of the normal hair. Fluorescence and three dimensional (3D) topographical images were obtained by a confocal laser scanning microscope (CLSM). In 3D images, the green emission intensity of normal hair was much higher than that of fluorescing UVB-irradiated hair. The intensity of green emission reflects the intrinsic fluorescence of hair protein. Also, a fluorescent imaging method using fluorescamine reagent was used to identify the free amino groups resulting from a peptide bond breakage in UVB-irradiated hair. Strong blue fluorescence of UVB-irradiated hair, which indicates a very high level of amino groups, was observed by CLSM. Therefore, the fluorescamine as an extrinsic fluorescence could provide a useful tool to identify the peptide bond breakage in UVB-irradiated hair. Infrared image mapping was also employed to assess the cross-sections of normal and UVB-irradiated specimens to examine the oxidation of disulfide bonds. The degree of peak areas with strong absorbance for the disulfide mono-oxide was spread from the outside to the inside of hair. The spectroscopic techniques used alone, or in combination, launch new possibilities in the field of hair cosmetics.

An Investigation into the Secondary Science Teachers' Perception on Scientific Models and Modeling (과학적 모델과 모델링에 대한 중등 과학 교사의 인식 탐색)

  • Cho, Eunjin;Kim, Chan-jong;Choe, Seung-urn
    • Journal of The Korean Association For Science Education
    • /
    • v.37 no.5
    • /
    • pp.859-877
    • /
    • 2017
  • The purpose of this study is to probe secondary science teachers' perception on scientific models and modeling. A total of 50 experienced science teachers were surveyed with 10 open-ended questions about several aspects of models and modeling: definition, examples, purpose, multiplicity, changeability, design/construction, evaluation and beliefs in the use of models and modeling as a teaching tool. The analysis of the data shows the following results: 1) understanding of models and modeling held by a majority of experienced secondary science teachers was far from that of experts as they concentrated on a model's superficial, representative, and visual functions, 2) when it comes to their view toward the use of a model, a model does not remain in the stage of 'doing science' but in the stage of being a subsidiary teaching tool for the teacher's explaining and the students' understanding of scientific concepts, 3) the subjects they majored in made meaningful differences in their contextual understanding of models and modeling, 4) though most of the teachers acknowledged the importance of teaching about models and modeling, even a lot of them showed a negative position toward the opinion that they are willing to apply modeling to their classes. Implications of the results were discussed in terms of intervention in order to enhance secondary science teachers' understanding and pedagogical content knowledge of models and modeling.

Analysis of the Effect of the AI Utilization Competency Enhancement Education Program on AI Understanding, AI Efficacy, and AI Utilization Perception Improvement among Pre-service Secondary Science Teachers (AI 활용 역량 강화 교육 프로그램이 중등 과학 예비교사들의 AI 이해, AI 효능감 및 AI 활용에 대한 인식 개선에 미친 효과 분석)

  • Jihyun Yoon;So-Rim Her;Seong-Joo Kang
    • Journal of The Korean Association For Science Education
    • /
    • v.43 no.2
    • /
    • pp.99-110
    • /
    • 2023
  • In this study, in order to strengthen the AI utilization competency of pre-service secondary science teachers, a project activity in which pre-service teachers directly create an 'AI-based molecular structure customized learning support tool' by using Google's teachable machine was developed and applied. To this end, the program developed for 26 third-grade pre-service teachers enrolled in the Department of Chemistry Education at H University in Chungcheongbuk-do was applied for 14 sessions during extracurricular activities. Then, the perceptions of 'understanding how AI works', 'efficacy of using AI in science classes', and 'plans to utilize AI in science classes' were investigated. As a result of the study, it was found that the program developed in this study was effective in helping pre-service teachers understand the operating principle of AI technology for machine learning at a basic level and learning how to use it. In addition, the program developed in this study was found to be effective in increasing the efficacy of pre-service teachers for the use of AI in science classes. And it was also found that pre-service teachers recognized the aspect of using AI technology as a new teaching·learning strategy and tool that can help students understand science concepts. Accordingly, it was found that the program developed in this study had a positive impact on pre-service teachers' AI utilization competency reinforcement and perception improvement at the basic level. Implications of this were discussed.

Force Transmission in Cellular Adherens Junction Visualized by Engineered FRET Alpha-catenin Sensor (형광공명에너지전이 알파카테닌 센서를 활용한 세포 부착접합부에서의 힘 전달 이미징)

  • Jang, Yoon-Kwan;Suh, Jung-Soo;Suk, Myungeun;Kim, Tae-Jin
    • Korean Chemical Engineering Research
    • /
    • v.59 no.3
    • /
    • pp.366-372
    • /
    • 2021
  • Cadherin-Catenin complex is thought to play an essential role in the transmission of force at adherens junction. Due to the lack of proper tools to visualize and detect mechanical force signals, the underlying mechanism by which the cadherin-catenin complex regulates force transmission at intercellular junctions remains elusive. In this study, we visualize cadherin-mediated force transmission using an engineered α-Catenin sensor based on fluorescence resonance energy transfer. Our results reveal that α-catenin is a key force transducer in cadherin-mediated mechanotransduction at cell-cell junctions. Thus, our finding will provide important insights for studying the effects of chemical and physical signals on cell-cell communication and the relationship between physiological and pathological phenomena.

The Effect of Number of Echoes and Random Noise on T2 Relaxography : Development of 8-Echo CPMG (에코의 개수와 임의 잡음이 T2 이완영상의 구성에 미치는 영향연구 : 8에코 CPMG영상화 펄스열의 개발)

  • 정은기
    • Investigative Magnetic Resonance Imaging
    • /
    • v.2 no.1
    • /
    • pp.67-72
    • /
    • 1998
  • The mapping of the spin-spin relaxation time T2 in pixel-by-pixel was suggested as a quantitative diagnostic tool in medicine. although the CPMG pulse sequence has been known to be the best pulse sequence for T2 measurement in physics NMR, the supplied pulse sequence by the manufacture of MRI system was able to obtain the maximum of 4 CPMG images. Eight or more images with different echo time TEs are required to construct a reliable T2 map, so that two or more acquisitions were required, which easily took more than 10 minutes. 4-echo CPMG imaging pulse sequence was modified to generate the maximum of 8 MR images with evenly spaced echo time TEs. In human MR imaging, since patients tend to move at least several pixels between the different acquisitions, 8-echo CPMG imaging sequence reduces the acquisition time and may remove any mis-regitration of each pixels signal for the fitting of T2. The resultant T2 maps using the theoretically simulated images and using the MR images of the human brain suggested that 8 echo CPMG sequence with short echo spacing such as 17-20 msec can give the reliable T2 map.

  • PDF

A Survey of Perceptions of Elementary School Teachers on the Small-Scale Chemistry (미량화학(Small-Scale Chemistry)에 대한 초등학교 교사들의 인식)

  • Kim, Sung-Kyu;Kong, Young-Tae
    • Journal of Science Education
    • /
    • v.34 no.2
    • /
    • pp.291-305
    • /
    • 2010
  • The aim of this study was to survey the perceptions of the elementary school teachers on the smallscale chemistry(SSC) following its training session. The teachers participating in the survey were 266 teachers in the Gyeongnam province. They were given a questionnaire that focused on the nine areas of the SSC: Needs for the teacher training and its application, its benefits, issues of safety and danger as well as treatment of environmental pollution, its economic efficiency and the development of investigative skills. The designed questionnaire was checked by an authority, and the responses to each question were tallied and analyzed. The results are as follows. The biggest problems of the traditional experimental methods as rated by the teachers were, in the order of importance, the preparation time, the legal liability of teachers for the safety and accidents, financial issues, disposal of the experimental wastes and the lack of relevant data. Since most of the teachers had not experienced the SSC lab programs in the field, they responded positively to the questions of need for its introduction and training. The implementation of the experimental SSC lab programs should proceed in the following order: introduction into the textbook, teacher training program, after-school education and the invitation of instructors. The most useful materials for the SSC program were CDs, videos, books and various printed materials, in that order. The responses regarding benefits of the SSC program included its simplicity, convenience, time savings, diversity, qualitative and quantitative aspects, integration into the regular class and use of toys. In particular, the teachers mentioned the increased safety due to the small amount of experimental reagents needed and the durability of plastic instruments. The familarity from the use of everyday tools as well as easy access to and the low-cost of the instruments were other important benefits. The teachers in general rated the educational content of the program highly, but many also found it to be average. Some pointed out the lack of sufficient discussion due to the individual or pair groupings as a potential shortcoming. The potential for development of problem solving ability and improvement of skills was rated positively. The number of teacher who rated the development of creativity positively was just over the half. As for the area of improving investigative skills, many found its assessment difficult and confusing because of the lack of its systemic definition and categorization. Based on the findings of this study, I would like to recommend the application and a wider dissemination of the small-scale chemistry lab program into the elementary school science curriculum.

  • PDF