• Title/Summary/Keyword: 화학기계적 연마

Search Result 127, Processing Time 0.044 seconds

Hydrodynamic Pressure and Shear Stress in Chemical Mechanical Polishing (화학기계적연마 공정의 윤활역학적 압력 및 전단응력 분포 해석)

  • 조철호;박상신;안유민
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.179-184
    • /
    • 2000
  • Chemical Mechanical Polishing (CMP) refers to a material removal process done by rubbing a work piece against a polishing pad under load in the presence of chemically active and abrasive containing slurry. CMP process is a combination of chemical dissolution and mechanical action. The mechanical action of CMP involves hydrodynamic behavior. The liquid slurry is trapped between the work piece and pad forming a hydrodynamic film. For the first step to understand material removal mechanism of the CMP process, the hydrodynamic analysis is done with semiconductor wafer. Three-dimensional Reynolds equation is applied to get pressure distribution of the slurry film. Shear stress distributions on the wafer surface are also analyzed

  • PDF

A study of temperature behavior and friction force generated by chemical mechanical polishing (화학 기계적 연마 시 발생하는 온도특성과 마찰력에 관한 연구)

  • 권대희;김형재;정해도;이응숙;신영재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.939-942
    • /
    • 1997
  • In chemical mechanical polishing(CMP) there are many factors affecting the results. Temperature is one of the factors and it affects the removal rate. That is, the higher it arise, the more the material is removed. But the detailed temperature behavior is not discovered. In this study, we discover the distribution of temperature across the pad where the wafer has just been polished. And then we reveal the cause of the result in connection with the mechanical structure. In addition, we also discover the relationship of the friction force and normal force. With the result of two forces, we get the friction coefficient and obtain the contact model of the wafer and pad.

  • PDF

A Study of Data correction method when in-situ end point detection in Chemical-Mechanical Polishing of Copper Overlay (구리 박막 CMP의 실시간 end point detection을 위한 데이터 정밀도 개선 방법에 관한 연구)

  • Kim, Nam-Woo;Hur, Chang-Wu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.6
    • /
    • pp.1401-1406
    • /
    • 2014
  • Knowledge of the manufacturing process of semiconductor devices in order to obtain a copper pattern using chemical mechanical polishing (CMP) planarization using a Wafer polishing process is applied with a thickness of the copper measured in real time, which need to be precisely controlled by, where the acquisition the actual thickness of the sensor value with the calculated value in terms of error can occur in the process. Approximated the actual measurement values so as to obtain a method using a simple average, moving average, compared to the results using filters onggo Strom real-time measurements of the thickness of the units of the control system to reduce the variation in the implementation of the method described for the.

Development of Bonding Dispenser and Press Machine to Regenerate Retainer Ring for Semiconductor CMP Process (반도체 CMP 공정용 리테이너 링 재생을 위한 본딩 디스펜서 및 프레스 머신 개발)

  • Hyoung-Keun Park
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.3
    • /
    • pp.507-514
    • /
    • 2024
  • In the semiconductor manufacturing line, continuous efforts are being made to reduce the cost of products produced, and the demand for this is accelerating in the chemical mechanical polishing(CMP) process, and a representative example of these cost reduction items is the 5-Zone Ring. After about 150 hours of use in the CMP process, the thickness of the ring decreases to less than 1 mm and must be replaced with a new product. Therefore, in this study, bonding dispensers and press machines with a dispensing amount error of 10g±0.8% or less and a pressure uniformity of ±1.8% or less were developed to reduce semiconductor manufacturing costs by repeatedly regenerating worn parts of the retainer ring, and to minimize environmental pollution caused by industrial waste treatment.

Tribology Research Trends in Chemical Mechanical Polishing (CMP) Process (화학기계적 연마(CMP) 공정에서의 트라이볼로지 연구 동향)

  • Lee, Hyunseop
    • Tribology and Lubricants
    • /
    • v.34 no.3
    • /
    • pp.115-122
    • /
    • 2018
  • Chemical mechanical polishing (CMP) is a hybrid processing method in which the surface of a wafer is planarized by chemical and mechanical material removal. Since mechanical material removal in CMP is caused by the rolling or sliding of abrasive particles, interfacial friction during processing greatly influences the CMP results. In this paper, the trend of tribology research on CMP process is discussed. First, various friction force monitoring methods are introduced, and three elements in the CMP tribo-system are defined based on the material removal mechanism of the CMP process. Tribological studies on the CMP process include studies of interfacial friction due to changes in consumables such as slurry and polishing pad, modeling of material removal rate using contact mechanics, and stick-slip friction and scratches. The real area of contact (RCA) between the polishing pad and wafer also has a significant influence on the polishing result in the CMP process, and many researchers have studied RCA control and prediction. Despite the fact that the CMP process is a hybrid process using chemical reactions and mechanical material removal, tribological studies to date have yet to clarify the effects of chemical reactions on interfacial friction. In addition, it is necessary to clarify the relationship between the interface friction phenomenon and physical surface defects in CMP, and the cause of their occurrence.

Voltage-Activated Electrochemical Reaction of Chemical Mechanical Polishing (CMP) Application (CMP공정의 전압 활성화로 인한 전기화학적 반응 특성 연구)

  • Han, Sang-Jun;Park, Sung-Woo;Lee, Sung-Il;Lee, Young-Kyun;Choi, Gwon-Woo;Lee, Woo-Sun;Seo, Yong-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.81-81
    • /
    • 2007
  • Chemical mechanical polishing (CMP) 공정은 deep 서브마이크론 집적회로의 다층배선구조률 실현하기 위해 inter-metal dielectric (IMD), inter-layer dielectric layers (ILD), pre-metal dielectric (PMD) 층과 같은 절연막 외에도 W, Al, Cu와 같은 금속층을 평탄화 하는데 효과적으로 사용되고 있으며, 다양한 소자 제작 및 새로운 물질 등에도 광범위하게 응용되고 있다. 하지만 Cu damascene 구조 제작으로 인한 CMP 응용 과정에서, 기계적으로 깨지기 쉬운 65 nm의 소자 이하의 구조에서 새로운 저유전상수인 low-k 물질의 도입으로 인해 낮은 하력의 기계적 연마가 필요하게 되었다. 본 논문에서는 전기화학적 기계적 연마 적용을 위해, I-V 특성 곡선을 이용하여 active, passive, transient, trans-passive 영역의 전기화학적 특성을 알아보았으며, Cu 막의 표면 형상을 알아보기 위해 scanning electron microscopy (SEM) 측정과 energy dispersive spectroscopy (EDS) 분석을 통해 금속 화학적 조성을 조사하였다.

  • PDF