• Title/Summary/Keyword: 화재.폭발

Search Result 677, Processing Time 0.03 seconds

Risk Assessment and Its Application for the POSCO's Batch Annealing Furnace Gas Systems (광양제철소 소둔로 가스설비에 대한 위험성 평가 및 안전성향상안 제시)

  • Kim Y. S.;Yoo J. H.;Jeong S. Y.;Jang E. J.
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.2 s.14
    • /
    • pp.9-13
    • /
    • 2001
  • A complete spectrum of risk assessment including qualitative and quantitative approaches were performed for the POSCO's Batch Annealing Furnace (BAF) gas systems. The purpose of BAF is to enhance the quality of steel by annealing it with either hydrogen/nitrogen mixture gas or pure hydrogen gas. Number of gas leak scenarios were identified to generate frequency of their occurrences. With the hypothetical accident scenarios given, fire/explosion impact studies were performed to estimate magnitude of significant consequences. Several different indices were also presented from which practical safety improvement action items could be established.

  • PDF

Qualitative Hazard Analysis for LNG Gas Stations Using K-PSR Method (K-PSR을 이용한 LNG 충진소에 대한 정성적 위험성평가)

  • Ko, Jae-Wook;Lee, Jae-Min;Yoo, Jin-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.4 s.33
    • /
    • pp.63-69
    • /
    • 2006
  • With the increased interest in reducing air pollution, supply of natural gas for gas vehicles is increasing. Thus, the number of establishments of LNG and CNG stations is increasing as well. However, due to major gas accidents such as the fire and explosion accident of a Bucheon LPG station in 1998, it is difficult to establish a new station. In this research, we conducted qualitative hazard analysis fer LCNG/LNG multi-station by using the K-PSR method and proposed recommendations for hazard mitigation.

  • PDF

Prediction of Flash Point of Binary Systems by Using Multivariate Statistical Analysis (다변량 통계 분석법을 이용한 2성분계 혼합물의 인화점 예측)

  • Lee, Bom-Sock;Kim, S.Y.;Chung, C.B.;Choi, S.H.
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.4 s.33
    • /
    • pp.29-33
    • /
    • 2006
  • Estimation of process safety is important in the chemical process design. Prediction for flash points of flammable substances used in chemical processes is the one of the methods for estimating process safety. Flash point is the property used to examine the potential for the fire and explosion hazards of flammable substances. In this paper, multivariate statistical analysis methods(partial least squares(PLS) quadratic partial least squares(QPLS)) using experimental data is suggested for predicting flash points of flammable substances of binary systems. The prediction results are compared with the values calculated by laws of Raoult and Van Laar equation.

  • PDF

The Measurement and Prediction of Fire and Explosion Properties of n-Nonane (노말노난의 화재 및 폭발 특성치의 측정 및 예측)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.5
    • /
    • pp.42-48
    • /
    • 2016
  • The usage of the correct combustion properties of the treated substance for the safety of the process is critical. For the safe handling of n-nonane being used in various ways in the chemical industry, the flash point and the autoignition temperature(AIT) of n-nonane was experimented. And, the explosion limit of n-nonane was calculated by using the flash point obtained in the experiment. The flash points of n-nonane by using the Setaflash and Pensky-Martens closed-cup testers measured $31^{\circ}C$ and $34^{\circ}C$, respectively. The flash points of n-nonane by using the Tag and Cleveland open cup testers are measured $37^{\circ}C$ and $42^{\circ}C$. The AIT of n-nonane by ASTM 659E tester was measured as $210^{\circ}C$. The lower explosion limit by the measured flash point $31^{\circ}C$ was calculated as 0.87 vol%. And the upper explosion limit by the measured upper flash point $53^{\circ}C$ was calculated as 2.78 vol%. It was possible to predict lower explosion limit by using the experimental flash point or flash point in the literature.

Development of BMS for High Efficiency Lithium-Polymer Battery (고효율 리튬폴리머 축전지 관리시스템 개발)

  • Shin, Hyun-Joo;Ko, Young-Cheol;Kim, Deak-Ho;Bae, Eun-Seoub;Lee, Se-Hyun
    • Proceedings of the KIPE Conference
    • /
    • 2009.11a
    • /
    • pp.111-113
    • /
    • 2009
  • 침몰한 잠수함 승조원의 구조용으로 사용되는 구난잠수정은 주 전원과 보조전원으로 축전지가 필수적으로 사용된다. 그러나 사용 중인 축전지 모듈이나 뱅크의 일부 셀(Cell)에 불량이 발생하면 전체 축전지 뱅크의 기능이 저하되어 구난정 시스템을 적절히 운영하지 못하여 제대로 임무를 수행하지 못하거나 커다란 손실을 가져온다. 그리고 축전지에 과 충전이나 과 방전이 발생하면 축전지가 폭발하여 화재가 발생하거나 축전지 내부 구조의 파괴로 더 이상 사용 못하는 경우가 발생한다. 따라서 이와 같이 축전지에 손상을 줄 수 있는 상황을 미연에 방지하여 축전지가 최적의 동작 상태를 유지할 수 있도록 해주고 전체 시스템의 신뢰성을 향상시키기 위하여 본 논문에서는 구조잠수정용 리튬폴리머 (Lithium Polymer) 축전지 관리장치의 개발을 수행하였다. 본 논문을 통해 축전지 관리 장치(BMS : Battery Management System)의 핵심기술인 H/W 및 S/W 설계기술, 각 Cell의 전압 제어기술, SOC(State of Charge) 제어 알고리즘 도출 및 시스템 운영 기술을 구현하였으며 개발된 알고리즘과 기능은 충 방전 부하시험과 한국 선급인증시험을 통해 유효한 방식임을 확인하였다.

  • PDF

Quality control for the liquid oxygen as the oxidizer of launcher and the liquid oxygen filling system as ground facility (액체산소를 사용하는 발사체 산화제 및 산화제 지상공급시스템의 품질관리)

  • Kim, Ji-Hoon;Yoo, Byung-Il;Kang, Sun-Il;Oh, Seung-Hyub
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.309-312
    • /
    • 2009
  • The various hazards should be eliminated before operations for the successful launches or tests. Using the contaminated propellants is one of the causes for the launch and test failures. Especially, the systems using liquid oxygen as an oxidizer have risks about fires and explosions not be forecasted if they are contaminated by oil, water and mechanical impurities. The procedure for the quality control of the liquid oxygen and the liquid oxygen filling system and the lessons learned from the first launch preparation with the system are introduced on this paper.

  • PDF

Oxygen contents monitoring in the building for launch and test facilities (발사대 및 시험장 건물 내의 산소농도 관리)

  • Kim, Ji-Hoon;Yoo, Byung-Il;Cho, Sang-Yeon;Kang, Sun-Il;Oh, Seung-Hyub
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.246-249
    • /
    • 2009
  • Test and launch facilities which use oxygen as the propellant of a launch vehicle have hazards of fire and explosion by the leakage of oxygen. Also, the personnel operating the facilities, which use the high-pressured gases like nitrogen and helium in the closed room, is exposed to the hazard of death from suffocation. Consequently, we should keep out of the hazards and the accidents by monitoring the contents of oxygen in the air. The method and the system construction for monitoring oxygen contents in the air and the results from its application to Naro space center are described on this paper.

  • PDF

State-of-the-Art Research on the Reinforced Concrete Walls (철근콘크리트 벽체의 국내.외 연구동향)

  • Yun, Hyun-Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.875-878
    • /
    • 2008
  • This paper summarizes on the state-of-the-art research on the reinforced concrete (RC) walls for evaluating and predicting the performance of RC walls analytically and experimentally. A brief discussion of the research trends is presented to propose the further research direction of RC walls. In the paper, 102 papers published on the ACI, Engineering Structure, KCI journal, and AIK journal are collected and reviewed.

  • PDF

Prediction of Autoignition Temperature of n-Propanol and n-Octane Mixture (n-Propanol과 n-Octane 혼합물의 최소자연발화온도의 예측)

  • Ha, Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.2
    • /
    • pp.21-27
    • /
    • 2013
  • The lowest values of the AITs(Autoignition temperatures) in the literature were normally used fire and explosion protection. In this study, the AITs of n-Propanol+n-Octane system were measured from ignition delay time(time lag) by using ASTM E659 apparatus. The AITs of n-Propanol and n-Octane which constituted binary systems were $435^{\circ}C$ and $218^{\circ}C$, respectively. The experimental ignition delay time of n-Propanol+n-Octane system were a good agreement with the calculated ignition delay time by the proposed equations with a few A.A.D.(average absolute deviation).

The Measurement of Fire and Explosion Properties of n-Pentadecane (노말펜타데칸의 화재 및 폭발 특성치의 측정)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.4
    • /
    • pp.53-57
    • /
    • 2013
  • For the safe handling of n-pentadecane, the lower flash points and the upper flash point, fire point, AITs(auto-ignition temperatures) by ignition delay time were experimented. Also lower and upper explosion limits by using measured the lower and upper flash points for n-pentadecane were calculated. The lower flash points of n-pentadecane by using closed-cup tester were measured $118^{\circ}C$ and $122^{\circ}C$. The lower flash points and fire point of n-pentadecane by using open cup tester were measured $126^{\circ}C$ and $127^{\circ}C$, respectively. This study measured relationship between the AITs and the ignition delay times by using ASTM E659 apparatus for n-pentadecane. The experimental AIT of n-pentadecane was $195^{\circ}C$. The calculated lower and upper explosion limit by using measured lower $118^{\circ}C$ and upper flash point $174^{\circ}C$ for n-pentadecane were 0.54 Vol.% and 6.40 Vol.%.