• Title/Summary/Keyword: 화염 안정성

Search Result 131, Processing Time 0.03 seconds

Lift-off and Flame Stability of a Coaxial Non-Premixed Jet Using Oxygen Enriched Air (산소부화공기를 이용한 동축 제트화염의 부상과 연소 안정성)

  • Kwark, Ji-Hyun;Jeon, Chung-Hwan;Chang, Young-June
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.326-331
    • /
    • 2003
  • Combustion using oxygen enriched air is known as a technology which can increase flame stability as well as thermal efficiency due to improvement of the burning rate. Lift-off, blowout limit and flame length were examined as a function of jet velocity, coflow velocity and OEC(Oxygen Enriched Concentration). Blowout limit of the flame below OEC 25% decreased with coflow velocity, but the limit above OEC 25% increased inversely. Lift-off height decreased with increase of OEC. Especially lift-off hardly occurred in the condition above OEC 40%. Flame length of the flames above OEC 40% was increased until the blowout occurred. Flame stability became improved since lift-off and blowout limit increased much with increase of OEC.

  • PDF

An Experimental Study on the Combustion Phenomena in Porous Media (다공질 내부의 연소현상에 대한 실험적 연구)

  • Lee, Yong-Il;Sin, Hyeon-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.1
    • /
    • pp.321-327
    • /
    • 1996
  • Experiments were performed on the laminar premixed flame stabilized in a porous medium to know whether the flame downstream of the combustor exists or not. In previous theoretical studies, a stable flame has been predicted in the downstream region of the combustor, but it has never been observed in experiments. In this study, a stable downstream flame could be obtained for the lower burning velocity through circumferential heating by a blue flame positioned outside the periphery of the specially devised combustor. The existence of the stable downstream flame was confirmed by a direct photography of soot line, and temperature measurements. The effect of combustor diameter to flame stability was also considered. As the diameter of the combustor increases, the lean flammability limit was extended.

Basic Study on the Flame Stability of Burner for Regeneration of Diesel Particulate Filter in Engine Exhaust Gas (DPF 재생용 버너의 엔진 배기 중에서의 화염 안정성 구현을 위한 기초 연구)

  • Shim, Sung-Hoon;Jeong, Sang-Hyun;Hong, Won-Seok
    • Journal of the Korean Society of Combustion
    • /
    • v.10 no.4
    • /
    • pp.10-17
    • /
    • 2005
  • Sustaining of flame stability of the burner installed in Dielsel exhaust pipe is very difficult because of steep fluctuation of pressure and flow rate. A burner for DPF (Diesel Particulate Filter) which clogged by collected soot regeneration has been made of metal fiber for the purpose of realization of flame stability even in unfavorable condition of Diesel engine exhaust. Flame stability of the metal fiber burner has been investigated in various condition of engine operation. It has been identified that metal fiber burner with liner which has swirl guide vane presents excellent flame stability even in the higher engine revolutions than 3000rpm and sudden variation. The results offer the possibility of development of full flow burner system for DPF regeneration.

  • PDF

An Experimental Study On Characteristics of Flame and Combustion Stability of Coaxial Jet Injectors (동축형 제트 분사기의 화염 및 연소 안정성 특성에 관한 실험적 연구)

  • Son, Jinwoo;Min, Yong Ho;Sohn, Chae Hoon
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.2
    • /
    • pp.15-21
    • /
    • 2016
  • Flame characteristics and combustion stability of a swirl coaxial injector are studied experimentally. Characteristics of flame and combustion instability are analyzed with the parameter of MFR (momentum flux ratio) using hexane instead of kerosene. Flame patterns of blue and yellow are changed with variable MFR. Combustion instabilities are measured and analyzed by adopting a model chamber. Combustion instability mapping is made by evaluating damping factor at the 2 L (second longitudinal) mode with variable MFR in 63 cases for operating condition.

Evaluation of Thermal Durability for Thermal Barrier Coatings with Gradient Coating Thickness (경사화 두께를 갖는 열차폐 코팅의 열적 내구성 평가)

  • Lee, Seoung Soo;Kim, Jun Seong;Jung, Yeon-Gil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.8
    • /
    • pp.248-255
    • /
    • 2020
  • The effects of the coating thickness on the thermal durability and thermal stability of thermal barrier coatings (TBCs) with a gradient coating thickness were investigated using a flame thermal fatigue (FTF) test and thermal shock (TS) test. The bond and topcoats were deposited on the Ni-based super-alloy (GTD-111) using an air plasma spray (APS) method with Ni-Cr based MCrAlY feedstock powder and yttria-stabilized zirconia (YSZ), respectively. After the FTF test at 1100 ℃ for 1429 cycles, the bond coat was oxidized partially and the thermally grown oxide (TGO) layer was observed at the interface between the topcoat and bond coat. On the other hand, the interface microstructure of each part in the TBC specimen showed a good condition without cracking or delamination. As a result of the TS test at 1100 ℃, the TBC with gradient coating thickness was initially delaminated at a thin part of the coating layer after 37 cycles, and the TBC was delaminated by more than 50% after 98 cycles. The TBCs of the thin part showed more oxidation of the bond coat with the delamination of topcoat than the thick part. The thick part of the TBC thickness showed good thermal stability and oxidation resistance of the bond coat due to the increased thermal barrier effect.

Numerical Study of Premixed Combustion within a Porous Ceramic Burner of Different Ceramic Properties (서로 다른 물성치로 이루어진 다공 세라믹 연소기 속에서의 예혼합화염 연소에 대한 수치해석 연구)

  • Lim, In-Gweon
    • Journal of the Korean Society of Combustion
    • /
    • v.2 no.1
    • /
    • pp.1-8
    • /
    • 1997
  • Premixed combustion within porous ceramic media is numerically studied to understand burning characteristics and to find best configurations for burner implementations. Among many parameters, critical to burner performance, flame location and extinction coefficient are selected as major parameters for this study. The flame structure and burner performance with respect to these two parameters are observed. In the study, it is found that the location of flame is the most important in porous burner operation since it affects the rate of heat transfer and flame structure. Stability of the flame within the porous ceramic burner is discussed with respect to the flame location. It is found that to obtain high radiative output, the flame should be located downstream section of the burner. But the flame is to be unstable at most of downstream section except near the exit plane. To overcome this problem, new porous ceramic burner, using different ceramic properties in one burner instead of single property ceramic, is made and tested. With a combination of ceramics of high extinction coefficient at upstream and another material of low extinction coefficient at downstream of the burner, the flame can be stabilized at wider region of the burner with higher radiative output compared to the original burner configuration.

  • PDF

Characteristics of the Microwave Induced Flames on the Stability and Pollutant Emissions (마이크로파가 인가된 화염에서의 화염안정성 및 오염물질 배출특성)

  • Jeon, Young Hoon;Lee, Eui Ju
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.4
    • /
    • pp.23-27
    • /
    • 2014
  • The use of electromagnetic energy and non-equilibrium plasma for enhancing ignition and combustion stability is receiving increased attention recently. The conventional technologies have adapted the electrical devices to make the electromagnetic field, which resulted in various safety issues such as high-maintenance, additional high-cost system, electric shock and explosion. Therefore, an electrodeless microwave technology has an advantage for economic and reliability compared with conventional one because of no oxidation. However, the application of microwave has been still limited because of lack of interaction mechanism between flame and microwave. In this study, an experiment was performed with jet diffusion flames induced by microwaves to clarify the effect of microwave on the combustion stability and pollutant emissions. The results show that microwave induced flames enhanced the flame stability and blowout limit because of abundance of radical pool. However, NOx emission was increased monotonically with microwave intensity except 0.2 kW, and soot emission was reduced at the post flame region.

Recent Research Works on Chemiluminescence as Measures of Combustion Characteristics (화학발광을 활용한 연소계측 연구동향)

  • Seo, Seonghyeon;Moon, Insang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.1
    • /
    • pp.73-84
    • /
    • 2014
  • The present paper includes recent research works on the estimation of physical properties like equivalence ratio and heat release rate of flame through chemiluminescence measurement. Modern combustion devices require a precise control to increase combustion stability as well as to suppress pollutant emissions. The determination of combustion characteristics from chemiluminescence provides practical advantages over other techniques. However, the technique is dependent on equivalence ratio, combustion pressure, inlet temperature, turbulent intensity and fuel type. The intensity ratio of $OH^*$ and $CH^*$ has a strong relation with an equivalence ratio for methane/air premixed flames. The global measurement of chemiluminescence is accepted as a good indicator for a global heat release rate.

Numerical Study on the Reacting Flow Field abound Rectangular Cross Section Bluff Body (사각 둔각물체 주위의 반응유동장에 대한 수치적 연구)

  • Lee, Jung-Ran;Lee, Eui-Ju
    • Fire Science and Engineering
    • /
    • v.27 no.6
    • /
    • pp.64-69
    • /
    • 2013
  • The Numerical simulation was performed on the flow field around the two-dimensional rectangular bluff body in order to simulate an engine nacelle fire and to complement the previous experimental results of the bluff body stabilized flames. Fire Dynamic Simulator (FDS) based on the Direct Numerical Simulation (DNS) was employed to clarify the characteristics of reacting flow around bluff body. The overall reaction was considered and the constant for reaction was determined from flame extinction limits of experimental results. The air used atmosphere and the fuel used methane. For both fuel ejection configurations against an oxidizer stream, the flame stability and flame mode were affected mainly by vortex structure near bluff body. In the coflow configuration, air velocity at the flame extinction limit are increased with fuel velocity, which is comparable to the experiment results. Comparing with the isothermal flow field, the reacting flow produces a weak and small recirculation zone, which is result in the reductions of density and momentum due to temperature increase by reaction in the wake zone.

A Study on the Particle Behavior in Turbulent Pulverized Coal Flame (난류 미분탄화염 내 입자거동에 관한 연구)

  • Hwang, Seung-Min
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.12
    • /
    • pp.1111-1118
    • /
    • 2010
  • Combustion measurements based on optical techniques have recently become of major interest as tools not only for clarifying the combustion mechanism but also for validating the computational results for the combustion fields. In this study, the particle behavior in turbulent pulverized coal flame are investigated using advanced optical diagnostics. A laboratory-scale pulverized coal combustion burner is specially fabricated as open type in order to apply various optical measurement techniques. The detailed particle behavior is performed by LDV (laser Doppler velocimetry) and SDPA (shadow Doppler particle analyzer). It is observed that the particle mean diameter increase as the distance from burner increases, and this is found to be caused by the decrease of small particles' diameter and increase of large particles' diameter. This is because of result in the char reaction and the particle swelling due to devolatilization, respectively. The size-classified streamwise velocities of pulverized coal particles in the central region of the jet show the same magnitude, whereas those in the outer region are different depending on the particle size. The results show that the velocity and size-classified diameter of the pulverized coal particles in the flame can be measured well by SDPA.