DOI QR코드

DOI QR Code

Recent Research Works on Chemiluminescence as Measures of Combustion Characteristics

화학발광을 활용한 연소계측 연구동향

  • Seo, Seonghyeon (Department of Mechanical Engineering, Hanbat National University) ;
  • Moon, Insang (Engine Department, Korea Aerospace Research Institute)
  • Received : 2013.11.08
  • Accepted : 2014.01.14
  • Published : 2014.02.01

Abstract

The present paper includes recent research works on the estimation of physical properties like equivalence ratio and heat release rate of flame through chemiluminescence measurement. Modern combustion devices require a precise control to increase combustion stability as well as to suppress pollutant emissions. The determination of combustion characteristics from chemiluminescence provides practical advantages over other techniques. However, the technique is dependent on equivalence ratio, combustion pressure, inlet temperature, turbulent intensity and fuel type. The intensity ratio of $OH^*$ and $CH^*$ has a strong relation with an equivalence ratio for methane/air premixed flames. The global measurement of chemiluminescence is accepted as a good indicator for a global heat release rate.

본 논문에서는 화학발광 계측을 통한 연소화염의 당량비, 열방출율과 같은 물리량 판단에 대한 최신 연구결과를 정리 분석하였다. 현대의 연소장치는 연소의 동적 안정성 증대 및 공해물질 배출억제를 위해 세밀한 제어가 필요하다. 화학발광 세기 계측을 통한 물리량 파악은 그 적용에 있어서 많은 상대적 장점을 지니고 있다. 그러나 본 방법은 당량비, 연소압력, 입구온도, 난류세기, 연료 종류 등에 의해 많은 영향을 받는다. 연구결과를 종합하면, 메탄/공기 예혼합 화염에서 $CH^*/OH^*$가 연료 과농 조건을 제외하고 당량비와 밀접한 관계가 있다. 또한 넓은 공간에서 측정된 $OH^*$, $CH^*$ 신호는 전체 열방출율과 비례관계를 갖는 것으로 판단된다.

Keywords

References

  1. Correa, S.M., "Power Generation and Aeropropulsion Gas Turbines: From Combustion Science to Combustion Technology," Twenty-Seventh Symposium (International) on Combustion, pp. 1793-1807, 1998.
  2. Smith, J.J., Schneider, G., Suslov, D., Oschwald, M., and Haidn, O., "Steady-State High Pressure LOx/$H_2$ Rocket Engine Combustion," Aerospace Science and Technology, Vol. 11, pp. 39-47, 2007. https://doi.org/10.1016/j.ast.2006.08.007
  3. Lieuwen, T., Chang, M. and Amato, A., "Stationary Gas Turbine Combustion: Technology Needs and Policy Considerations," Combustion and Flame, Vol. 160, pp. 1311-1314, 2013. https://doi.org/10.1016/j.combustflame.2013.05.001
  4. Ballester, J. and Garcia-Armingol, T., "Diagnostic Techniques for the Monitoring and Control of Practical Flames," Progress in Energy and Combustion Science, Vol. 36, pp. 375-411, 2010. https://doi.org/10.1016/j.pecs.2009.11.005
  5. Swell, J.B. and Sobieski, P.A., "Monitoring of Combustion Instabilities: Calpine's Experience," in Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling, eds. Lieuwen, T.C. and Yang, V., Vol. 210, Progress in Astronautics and Aeronautics, pp. 147-162, 2005.
  6. Goy, C.J., James, S.R., and Rea, S., "Monitoring Combustion Instabilities: E.ON UK's Experience," in Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling, eds. Lieuwen, T.C. and Yang, V., Vol. 210, Progress in Astronautics and Aeronautics, pp. 163-175, 2005.
  7. Eckbreth, A., Laser Diagnostics for Combustion Temperature and Species, Abacus Press, Cambridge MA, 1988.
  8. Docquier, N. and Candel, S., "Combustion Control and Sensors: a Review," Progress in Energy and Combustion Science, Vol. 28, pp. 107-150, 2002. https://doi.org/10.1016/S0360-1285(01)00009-0
  9. Poinsot, T.J., Trouve, A.C., Veynante, D.P., Candel, S.M., and Esposito, E.J., "Vortex-driven Acoustically Coupled Combustion Instabilities," Journal of Fluid Mechanics, Vol. 177, pp. 265-292, 1987. https://doi.org/10.1017/S0022112087000958
  10. Yu, K.H., Trouve, A., and Daily, J.W., "Low-frequency Pressure Oscillations in a Model Ramjet Combustor," Journal of Fluid Mechanics, Vol. 232, pp. 47-72, 1991. https://doi.org/10.1017/S0022112091003622
  11. Samaniego, J.M., Yip, B., Poinsot, T., and Candel, S., "Low-Frequency Combustion Instability Mechanisms in a Side-Dump Combustor," Combustion and Flame, Vol. 94, pp. 363-380, 1993. https://doi.org/10.1016/0010-2180(93)90120-R
  12. Richards, G.A., Janus, M., and Robey, E.H., "Control of Flame Oscillations with Equivalence Ratio Modulation," Journal of Propulsion and Power, Vol. 15, pp. 232-240, 1998.
  13. Broda, J.C., Seo, S., Santoro, R.J., Shirhattikar, G., and Yang, V., "An Experimental Study of Combustion Dynamics of a Premixed Swirl Injector," Twenty-Seventh Symposium (International) on Combustion, pp. 1849-1856, 1998.
  14. Lee, S.-Y., Seo, S., Broda, J.C., Pal, S., and Santoro, R.J., "An Experimental Estimation of Mean Reaction Rate and Flame Structure during Combustion Instability in a Lean Premixed Gas Turbine Combustor," Proceedings of the Combustion Institute, Vol. 28, pp. 775-782, 2000.
  15. Docquier, N., Belhalfaoui, S., Lacas, F., Darabiha, N., and Rolon, C., "Experiemtnal and Numerical Study of Chemiluminescence in Methane/Air High-Pressure Flames for Active Control Applications," Proceedings of the Combustion Institute, Vol. 28, pp. 1765-1774, 2000.
  16. Krishnamachari, S.L.N.G. and Broida, H.P., "Effect of Molecular Oxygen on the Emission Spectra of Atomic Oxygen-Acetylene Flames," The Journal of Chemical Physics, Vol. 34, No. 5, pp. 1709-1711, 1961. https://doi.org/10.1063/1.1701067
  17. Higgins, B., McQuay, M.Q., Lacas, F., Rolon, J.C., Darabiha, N., and Candel, S., "Systematic Measurements of OH Chemiluminescence for Fuel-Lean, High-Pressure, Premixed, Laminar Flames," Fuel, Vol. 80, pp. 67-74, 2001. https://doi.org/10.1016/S0016-2361(00)00069-7
  18. Kathrotia, T., Reaction Kinetics Modeling of OH*, CH*, and $C_{2}^{\ast}$ Chemiluminescence, Ph. D. Dissertation, Heidelberg University, May, 2011.
  19. Gaydon, A.G., The Spectroscopy of Flames, Wiley, New York, 1974.
  20. Yoo, S.W., Law, C.K., and Tse, S.D., "Chemiluminescent OH* and CH* Flame Structure and Aerodynamic Scaling of Weakly Buoyant, Nearly Spherical Diffusion Flames," Proceedings of the Combustion Institute, Vol. 29, pp. 1663-1670, 2002.
  21. Smith, G.P., Luque, J., Park, C., Jeffries, J.B., and Crosley, D.R., "Low Pressure Flame Determinations of Rate Constants for OH(A) and CH(A) Chemiluminescence," Combustion and Flame, Vol. 131, pp. 59-69, 2002. https://doi.org/10.1016/S0010-2180(02)00399-1
  22. Kojima, J., Ikeda, Y., and Nakajima, T., "Basic Aspects of OH(A), CH(A), and C2(d) Chemiluminescence in the Reaction Zone of Laminar Methane-Air Premixed Flames," Combustion and Flame, Vol. 140, pp. 34-45, 2005. https://doi.org/10.1016/j.combustflame.2004.10.002
  23. Savadatti M.I. and Broida H.P., "Spectral Study of Flames of Carbon Vapor at Low Pressure," The Journal of Chemical Physics, Vol. 45, No. 7, pp. 2390-2396, 1966. https://doi.org/10.1063/1.1727952
  24. Ferguson, R.E., "On the Origin of the Electronically Excited $C_{2}^{\ast}$ Radical in Hydrocarbon Flames," The Journal of Chemical Physics, Vol. 23, No. 11, pp. 2085-2089, 1955. https://doi.org/10.1063/1.1740671
  25. Akamatsu, F., Wakabayashi, T., Tsushima, S., Katsuki, M., Mizutani, Y., Ikeda, Y., Kawahara, N., and Nakajima, T., "The Development of a Light-Collecting Probe with High Spatial Resolution Applicable to Randomly Fluctuating Combustion Fields," Measurement Science and Technology, Vol. 10, pp. 1240-1246, 1999. https://doi.org/10.1088/0957-0233/10/12/316
  26. Muruganandam, T.M., Kim, B.-H., Morrell, M.R., Nori, V., Patel, M., Romig, B.W., and Seitzman, J.M., "Optical Equivalence Ratio Sensors for Gas Turbine Combustors," Proceedings of the Combustion Institute, Vol. 30, pp. 1601-1609, 2005.
  27. Nori, V.N. and Seitzman, J.M., "CH* Chemiluminescence Modeling for Combustion Diagnostics," Proceedings of the Combustion Institute, Vol. 32, pp. 895-903, 2009.
  28. Orain, M. and Hardalupas, Y., "Effect of Fuel Type on Equivalence Ratio Measurements using Chemiluminescence in Premixed Flames," Comptes Rendus Mecanique, Vol. 338, pp. 241-254, 2010. https://doi.org/10.1016/j.crme.2010.05.002
  29. Tripathi, M.M., Krishnan, S.R., Srinivasan, K.K., Yueh, F.-Y., and Singh, J.P., "Chemiluminescence-based Multivariate Sensing of Local Equivalence Ratios in Premixed Atmospheric Methane-Air Flames," Fuel, Vol. 93, pp. 684-691, 2012. https://doi.org/10.1016/j.fuel.2011.08.038
  30. Hardalupas, Y., Orain, M., Panoutsos, C.S., Taylor, A.M. K.P., Olofsson, J., Seyfried, H., Richter, M., Hult, J., Alden, M., Hermann, F., and Klingmann, J., "Chemiluminescence Sensor for Local Equivalence Ratio of Reacting Mixtures of Fuel and Air (FLAMESEEK)," Applied Thermal Engineering, Vol. 24, pp. 1619-1632, 2004. https://doi.org/10.1016/j.applthermaleng.2003.10.028
  31. Lawn, C.J., "Distribution of Instantaneous Heat Release by the Cross-Correlation of Chemiluminescent Emissions," Combustion and Flame, Vol. 123, pp. 227-240, 2000. https://doi.org/10.1016/S0010-2180(00)00129-2
  32. Hardalupas, Y. and Orain, M., "Local Measurements of the Time-Dependent Heat Release Rate and Equivalence Ratio using Chemiluminescent Emission from a Flame," Combustion and Flame, Vol. 139, pp. 188-207, 2004. https://doi.org/10.1016/j.combustflame.2004.08.003
  33. Balachandran, R., Ayoola, B.O., Kaminski, C.F., Dowling, A.P., and Mastorakos, E., "Experimental Investigation of the Nonlinear Response of Turbulent Premixed Flames to Imposed Inlet Velocity Oscillations," Combustion and Flame, Vol. 143, pp. 37-55, 2005. https://doi.org/10.1016/j.combustflame.2005.04.009
  34. Lauer, M. and Sattelmayer, T., "Heat Release Calculation in a Turbulent Swirl Flame from Laser and Chemiluminescence Measurements," 14th International Symposium on Applications of Laser Techniques to Fluid Mechanics, 2008.
  35. Lauer, M. and Sattelmayer, T., "On the Adequacy of Chemiluminescence as a Measure for Heat Release in Turbulent Flames with Mixture Ratio," Proceedings of ASME Turbo Expo 2009, GT2009-59631, 2009.
  36. Kathropia, T., Riedel, U., and Warnatz, J., "A Numerical Study on the Relation of OH*, CH*, and $C_2$ Chemiluminescence and Heat Release in Premixed Methane Flames," Proceedings of the European Combustion Meeting 2009, 2009.
  37. Najm, H.N., Paul, P.H., Mueller, C.J., and Wyckoff, P.S., "On the Adequacy of Certain Experimental Observables as Measurements of Flame Burning Rate," Combustion and Flame, Vol. 113, pp. 312-332, 1998. https://doi.org/10.1016/S0010-2180(97)00209-5
  38. Tsushima, S., Saitoh, H., Akamatsu, F., and Katsuki, M., "Observation of Combustion Characteristics of Droplet Clusters in a Premixed-Spray Flame by Simultaneous Monitoring of Planar Spray Images and Local Chemiluminescence," Twenty-Seventh Symposium (International) on Combustion, The Combustion Institute, pp. 1967-1974, 1998.
  39. Nori, V.N., Modeling and Analysis of Chemiluminescence Sensing for Syngas, Methane and Jet-A Combustion, Ph.D. Dissertation, Georgia Institute of Technology, August 2008.
  40. Frenillot, J.P., Cabot, G., Cazalens, M., Renou, B., and Boukhalfa, M.A., "Impact of $H_2$ Addition on Flame Stability and Pollutant Emissions for an Atmospheric Kerosene/Air Swirled Flame of Laboratory Scaled Gas Turbine," International Journal of Hydrogen Energy, Vol. 34, pp. 3930-3944, 2009. https://doi.org/10.1016/j.ijhydene.2009.02.059
  41. Nakamura, M., Nishioka, D., Hayashi, J., and Akamatsu, F., "Soot Formation, Spray Characteristics, and Structure of Jet Spray Flames under High Pressure," Combustion and Flame, Vol. 158, pp. 1615-1623, 2011. https://doi.org/10.1016/j.combustflame.2010.12.033
  42. Khalil, A.E.E. and Gupta, A.K., "Fuel Flexible Distributed Combustion for Efficient and Clean Gas Turbine Engines," Applied Energy, Vol. 109, pp. 267-274, 2013. https://doi.org/10.1016/j.apenergy.2013.04.052
  43. Ha, K. and Choi, S., "Tomographic Interpretations of Visible Emissions from the Axisymmetric Partially Premixed Flames," KSME Journal B, Vol. 24, No. 6, pp. 769-776, 2000.
  44. Jeong, Y.K., Jeon, C.H., and Chang, Y.J., "Evaluation of the Equivalence Ratio of the Reacting Mixture using Intensity Ratio of Chemiluminescence in Laminar Partially Premixed $CH_4$-Air Flames," Experimental Thermal and Fluid Science, Vol. 30, pp. 663-673, 2006. https://doi.org/10.1016/j.expthermflusci.2006.01.005
  45. Kim, M.-K., Yoon, J., Hwang, J., and Yoon, Y., "An Experimental Study on Combustion Instability Characteristics of Various Fuel-Air Mixing Section Geometry in a Model Dump Shape Combustor," Journal of the Korean Society of Propulsion Engineers, Vol. 16, No. 4, pp. 57-69, 2012.
  46. Lee, J.K., Kwon, M.J., Lee, C.Y., Kim, S.-W., and Shin, M.C., "An Experiment of Flame Chemiluminescence Measurement for Real Time Air/Fuel Ratio Control," Proceeding of he 45th KOSCO SYMPOSIUM, pp. 29-30, 2012.