• 제목/요약/키워드: 홍정하

검색결과 62건 처리시간 0.023초

조선(朝鮮) 산학자(算學者) 홍정하(洪正夏)의 계보(系譜) (Chosun Mathematician Hong Jung Ha's Genealogy)

  • 김창일;홍성사;홍영희
    • 한국수학사학회지
    • /
    • 제23권3호
    • /
    • pp.1-20
    • /
    • 2010
  • 조선의 가장 위대한 산학자 홍정하(洪正夏)의 수학적 계보와 가계를 조사하여 중인 산원들의 관계를 조사한다. 중인으로 산서를 저술한 산학자 경선징(慶善徵), 이상혁(李尙爀)과 홍정하(洪正夏)는 결혼에 의하여 연결되어 그들의 수학적 업적이 연결될 수 있었음을 보이고, 또 홍정하(洪正夏)의 가계와 인척으로 연결된 중인 산원들의 가계를 밝혀내어 홍정하(洪正夏)의 업적이 중인 산원들에 큰 영향을 끼친 것을 보인다.

18세기(世紀) 조선(朝鮮)의 구고술(句股術) (Gou Gu Shu in the 18th century Chosun)

  • 홍성사;홍영희;김창일
    • 한국수학사학회지
    • /
    • 제20권4호
    • /
    • pp.1-21
    • /
    • 2007
  • 18세기 초 중인(中人) 홍정하(洪正夏)($1684{\sim}?$)의 구일집(九一集)과 양반(兩班) 조태구(趙泰耉)($1660{\sim}1723$)의 주서관견(籌書管見)에 들어 있는 구고술(句股術)을 조사한다. 구조적 접근과 천원술(天元術)을 통하여 홍정하(洪正夏)는 동양(東洋)에서 가장 앞선 구고술(句股術)의 결과를 얻어내었다. 또 17세기 중엽에 서양(西洋) 수학(數學)이 조선(朝鮮)에 유입된 후 조선(朝鮮) 산학(算學)에 이론적 접근이 이루어지는 과정을 조태구(趙泰耉)의 구고술(句股術)을 통하여 연구한다.

  • PDF

홍정하(洪正夏)의 천원술(天元術)과 증승개방법(增乘開方法) (Hong JeongHa's Tianyuanshu and Zhengcheng Kaifangfa)

  • 홍성사;홍영희;김영욱
    • 한국수학사학회지
    • /
    • 제27권3호
    • /
    • pp.155-164
    • /
    • 2014
  • Tianyuanshu and Zengcheng Kaifangfa introduced in the Song-Yuan dynasties and their contribution to the theory of equations are one of the most important achievements in the history of Chinese mathematics. Furthermore, they became the most fundamental subject in the history of East Asian mathematics as well. The operations, or the mathematical structure of polynomials have been overlooked by traditional mathematics books. Investigation of GuIlJib (九一集) of Joseon mathematician Hong JeongHa reveals that Hong's approach to polynomials is highly structural. For the expansion of $\prod_{k=11}^{n}(x+a_k)$, Hong invented a new method which we name Hong JeongHa's synthetic expansion. Using this, he reveals that the processes in Zhengcheng Kaifangfa is not synthetic division but synthetic expansion.

조선(朝鮮)의 구고술(勾股術)과 방정식론 (Gou Gu Shu and Theory of equations in Chosun)

  • 윤혜순
    • 한국수학사학회지
    • /
    • 제24권4호
    • /
    • pp.7-20
    • /
    • 2011
  • 이 논문은 18~19세기 조선산학자(朝鮮算學者)의 산서인 홍정하(洪正夏)의 구일집(九一集), 남병길(南秉吉)의 유씨구고술(劉氏勾股術) 요도해(要圖解), 이상혁(李尙爀)의 차근방몽구(借根方蒙求)에 들어있는 구고술(勾股術)을 사용한 방정식 구성을 조사하여 조선산학(朝鮮算學)의 발전과정을 밝혀내는 것을 목적으로 한다. 중인 산학자 홍정하(洪正夏)의 위대한 업적이 제대로 전승되지 못하여 조선산학의 발전에 기여하지 못한 것을 드러낸다.

홍정하의 구일집의 저술에 관하여 - 홍정하 탄생 330주년을 기념하며 - (On the publication of Hong JeongHa's GuIlJib)

  • 이상욱;고영미
    • 한국수학사학회지
    • /
    • 제28권5호
    • /
    • pp.233-248
    • /
    • 2015
  • Year 2014 was very special to Korean mathematical society. Year 2014 was the Mathematical Year of Korea, and the International Congress of Mathematicians "ICM 2014" was held in Seoul, Korea. The year 2014 was also the 330th anniversary year of the birth of Joseon mathematician Hong JeongHa. He is one of the best, in fact the best, of Joseon mathematicians. So it is worth celebrating his birth. Joseon dynasty adopted a caste system, according to which Hong JeongHa was not in the higher class, but in the lower class of the Joseon society. In fact, he was a mathematician, a middle class member, called Jungin, of the society. We think over how Hong JeongHa was able to write his mathematical book GuIlJib in Joseon dynasty.

조선(朝鮮) 산서(算書) 산학계몽주해(算學啓蒙註解) (Chosun Mathematics Book Suan Xue Qi Meng Ju Hae)

  • 홍성사;홍영희
    • 한국수학사학회지
    • /
    • 제22권2호
    • /
    • pp.1-12
    • /
    • 2009
  • 주세걸(朱世傑)의 산학계몽(算學啓蒙)은 조선 산학의 발전에 가장 큰 기여를 하였다. 19세기 중엽에 출판된 산학계몽주해(算學啓蒙註解)를 조사하여 19세기 조선 산학의 발전을 연구한다. 홍정하(洪正夏)의 구일집(九一集)의 방정식논(方程式論)과 서양 수학의 영향을 받아 구조적으로 산학계몽(算學啓蒙)을 연구하여 저술한 산학계몽주해(算學啓蒙註解)는 19세기 조선의 대수학 발전의 기초를 이룬 산서이다.

  • PDF

홍정하(洪正夏)의 수론(數論) (Hong Jung Ha's Number Theory)

  • 홍성사;홍영희;김창일
    • 한국수학사학회지
    • /
    • 제24권4호
    • /
    • pp.1-6
    • /
    • 2011
  • 조선의 가장 위대한 산학자 홍정하(洪正夏)의 저서 $\ll$구일집(九一集)$\gg$(1724)에 들어있는 최소공배수를 구하는 법을 조사하여 홍정하의 수론에 대한 업적을 밝혀낸다. 홍정하는 두 자연수 a, b의 최대공약수 d와 최소공배수 l 에 대하여 l = $a\frac{b}{d}$=$b\frac{a}{d}$, $\frac{a}{d}$, $\frac{b}{d}$는 서로 소인 것을 인지하여, 자연수 $a_1,\;a_2,{\ldots},a_n$의 최대공약수 D에 대하여, $\frac{a_i}{D}$($1{\leq}i{\leq}n$)도 서로 소이고, 이들의 최소공배수 L도 서로 소인 $c_i(1{\leq}i{\leq}n)$가 존재하여 L = $a_ic_i(1{\leq}i{\leq}n)$임을 보였다. 이 결과는 조선에서 얻어낸 수론에 관한 수학적 업적 중에 가장 뛰어난 것 중의 하나이다. 홍정하가 수학적 구조를 밝혀내는 과정을 드러내는 것이 이 논문의 목적이다.