• Title/Summary/Keyword: 혼합화합물

Search Result 507, Processing Time 0.026 seconds

Microstructure Analysis of Cement Composite containing PMHS Emulsion to Improve Hydrophobic (소수성 증진을 위한 PMHS 유액 혼입 시멘트 복합체의 미세구조 분석)

  • Kim, Younghwan;Oh, Hongseob
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.1
    • /
    • pp.25-32
    • /
    • 2021
  • For developing the durable eco-concrete, water-repellent and hydrophobic emulsion were prepared by stirring and mixing polymethyl hydrosiloxane and polyvinyl alcohol. After adding the PMHS emulsion cement paste, the hydration reaction characteristics and the change in chemical composition were analyzed through BSE and EDS analysis, and the micropores were evaluated by MIP test. Cement mixed with PMHS emulsion was analyzed to increase the hydration reactivity and to decrease the capillary porosity, but it was found that the capillary porosity varies depending on the degree of dispersion of the emulsion in the cement paste. In the case of the emulsion containing metakaolin, there was little difference in hydration degree and porosity from the case of using only the PMHS emulsion. However, when the cement surface was coated with PMHS emulsion, the contact angle was found to increase significantly compared to OPC, and it was analyzed that especially when PVA fiber was used together, it changed to a hypohydrophobic surface.

Adsorption Properties of Paint Mixed with Powdered Activated Carbon According to the Number of Coatings (분말활성탄을 혼합한 도료의 도장횟수에 따른 흡착 특성)

  • Choi, Byung-Cheol;Kyoung, In-Soo;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.25-26
    • /
    • 2021
  • Due to COVID-19, the spread of non-face-to-face culture is increasing the time spent indoors. Accordingly, it is necessary to reduce indoor air pollutants. Also, among building materials, there are paints. As the number of coatings increases, the coating film becomes thick, and there is a risk of cracking and falling off. Therefore, this study is to examine the adsorption properties of indoor air pollutants according to the number of coatings of a paint mixed with powdered activated carbon. In the experimental plan, the addition ratio of powdered activated carbon was selected as 30%, and the number of coatings was selected as primcoating, second coat, and finishing coat, and the concentration of formaldehyde and volatile organic compounds were measured. As a result, as the number of coatings increased, the concentration of formaldehyde and volatile organic compounds tended to decrease. This is considered to be due to the fact that not only the physical adsorption acted by the internal pores of the powdered activated carbon, but also because a lot of powdered activated carbon was present on the painted surface as the coating film was formed. However, since it is judged that there is an error in the concentration due to the inflow of external air as the chamber cover is opened to put the test object in the adsorption test process, it is considered that the experimental method needs to be supplemented.

  • PDF

Effect of ethylene glycol on the nano-sized ZnO nanoparticles using polyol process (폴리올 공정을 이용한 에틸렌 글리콜이 나노 크기의 산화아연 나노입자에 미치는 영향)

  • Dae-Hwan Jang;Bo-Ram Kim;Dae-Weon Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.4
    • /
    • pp.117-124
    • /
    • 2024
  • Zinc oxide nanoparticles were synthesized using the polyol method with ethylene glycol containing hydroxyl groups (-OH). It was confirmed that the zinc compounds prepared by the polyol method were a mixture of zinc carbonate hydroxide (Zn5(OH)6(CO3)2) and zinc oxide (ZnO) crystalline structures. Calcination at 400℃, 600℃ and 800℃ was performed to examine the effects of calcination temperature on the particle size, morphology and crystallinity of zinc oxide. ZnO powders of calcination at 800 ℃ was evaluated to particle size analysis from ethylene glycol containing precursor solution compared with distilled water based solution. The zinc oxide particles obtained from the former had a particle size of approximately 404 ± 51 nm, whereas those from the latter exhibited a more uniform nanoparticles morphology with a particle size of approximately 109 ± 29 nm. This demonstrates that the addition of ethylene glycol can control the influence of water molecules, enabling the direct synthesis of zinc oxide in the form of uniform nanoparticles.

Preparation and Characterization of Jochung, a Grain Syrup, with Apple (사과 첨가 조청의 제조 및 특성)

  • Yang, Hye-Jin;Ryu, Gi-Hyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.1
    • /
    • pp.132-137
    • /
    • 2010
  • This study was performed to investigate the effect of apple and maltitol as ingredients on the quality of Jochung, a grain syrup. Four kinds of Jochung products were prepared from steamed-rice, apple juice, heated-apple sarcocarp (at $70^{\circ}C$, 60 min), and a mixture (sarcocarp : maltitol=5:1, w/w) by saccharifying (at $55^{\circ}C$, 8 hrs) with a malt (100 g/500 g rice), mixing the ingredients (steamed-rice : ingredient=5:5, w/w), filtering, and heating the filtrate (at $95^{\circ}C$, 2 hrs): product (A) with apple juice added before saccharified, product (B) with apple juice added after saccharified, product (C) with heated-apple sarcocarp added after saccharified, and product (D) with the mixture added after saccharified. The product (D) had the lowest pH value ($4.60\pm0.01$) of any other products. The contents of reducing sugar and total phenolic compound were the highest in the product (A) among all the products, which comprised $68.10\pm6.71$% and $7.36\pm0.85$ mg/g, respectively, resulting in good quality. The solidity and the dextrose equivalence had the highest value in the product (B) and the product (C), respectively. The malic acid content ($4.10\pm0.02$%) of the product (D) was the highest of any other organic acids identified by HPLC. Hunter L, a, and b values of the product (D) were the highest compared to other products. In sensory evaluation, the product (A) had generally higher score in all sensory attributes. It was concluded from the chemical and sensory evaluation that adding the apple juice before saccharified might be an effective method for manufacturing good quality rice-Jochung.

Evaluating Stabilization Efficiency of Coal Combustion Ash (CCA) for Coal Mine Wastes: Column Experiment (석탄회를 이용한 석탄광산 폐기물의 안정화 효율성 평가: 컬럼 시험)

  • Oh, Se-Jin;Kim, Sung-Chul;Ko, Ju-In;Lee, Jin-Soo;Yang, Jae-E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1071-1079
    • /
    • 2011
  • In this study, coal combustion ash (CCA) was evaluated for its stabilization effect on acidic mine waste with column experiment. Total of six treatments were installed depending on mixing ratio between coal wastes and CCA (0, 20, 40%) and mixing method (completely mixing and layered). Artificial acidic rain (pH 5.6) was used for feeding solution with flow rate of $0.05mL\;min^{-1}$. Result showed that higher pH of leachate was observed as more CCA was mixed. The highest pH in leachate was measured when 40% of CCA was mixed with coal waste (pH of 5.8). Also, complete mixing with CCA and coal waste was more effective to increase the pH of leachate than layered treatment. Regarding the reduction of soluble Fe amount, the highest efficiency (78%) was observed when 20% of coal ash was completely mixed with mine waste. Based on those result, optimum mixing ratio of coal ash with mine waste can be ranged 20-40% depending on environmental circumstances in the field.

Experimental Study on the Agglomeration Characteristics of Coal and Silica Sand by addition of KOH (KOH 첨가에 의한 석탄 및 유동사의 응집특성에 대한 실험적 연구)

  • Cho, Cheonhyeon;Gil, Eunji;Lee, Uendo;Lee, Yongwoon;Kim, Seongil;Yang, Won;Moon, Jihwan;Ahn, Seokgi;Jung, Sungmook;Jeong, Soohwa
    • Clean Technology
    • /
    • v.28 no.1
    • /
    • pp.46-53
    • /
    • 2022
  • The agglomeration characteristics of coal and silica sand were investigated under various conditions using mixed samples consisting of coal, silica sand, and potassium hydroxide, which is an agglomeration accelerator. The samples were prepared by either physically mixing or using aqueous solutions. The experiments using the physically mixed powder samples were performed with a two hour reaction time. The results showed that the number of aggregates generated increased as the reaction temperature and the total potassium content increased. The experiments using aqueous solutions were performed at 880 ℃, which is the operating temperature of a fluidized bed boiler, and at 980 ℃, which assumes a local hot spot. The amount of agglomeration generated as the reaction time increased and the total potassium content increased was identified. In the experiment performed at 880 ℃, the amount of aggregate generated clearly increased with the reaction time, and in the experiment performed at 980 ℃, assuming a local hot spot, a large amount of aggregate was generated in a relatively short time. The aggregates became harder as the potassium content increased. When the total potassium content was less than 1.37 wt.%, the aggregates were weak at both temperatures and collapsed even with a slight impact. Additionally, the surface characteristics of the silica sand and ash aggregates were observed by SEM-EDS analysis. The analysis revealed a large amount of potassium at the bonding sites. This result indicates that there is a high possibility of aggregation in the form of a eutectic compound when the alkali component is increased.

Low Temperature Growth of MCN(M=Ti, Hf) Coating Layers by Plasma Enhanced MOCVD and Study on Their Characteristics (플라즈마 보조 유기금속 화학기상 증착법에 의한 MCN(M=Ti, Hf) 코팅막의 저온성장과 그들의 특성연구)

  • Boo, Jin-Hyo;Heo, Cheol-Ho;Cho, Yong-Ki;Yoon, Joo-Sun;Han, Jeon-G.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.6
    • /
    • pp.563-575
    • /
    • 2006
  • Ti(C,N) films are synthesized by pulsed DC plasma enhanced chemical vapor deposition (PEMOCVD) using metal-organic compounds of tetrakis diethylamide titanium at $200-300^{\circ}C$. To compare plasma parameter, in this study, $H_2$ and $He/H_2$ gases are used as carrier gas. The effect of $N_2\;and\;NH_3$ gases as reactive gas is also evaluated in reduction of C content of the films. Radical formation and ionization behaviors in plasma are analyzed in-situ by optical emission spectroscopy (OES) at various pulsed bias voltages and gas species. He and $H_2$ mixture is very effective in enhancing ionization of radicals, especially for the $N_2$. Ammonia $(NH_3)$ gas also highly reduces the formation of CN radical, thereby decreasing C content of Ti(C, N) films in a great deal. The microhardness of film is obtained to be $1,250\;Hk_{0.01}\;to\;1,760\;Hk_{0.01}$ depending on gas species and bias voltage. Higher hardness can be obtained under the conditions of $H_2\;and\;N_2$ gases as well as bias voltage of 600 V. Hf(C, N) films were also obtained by pulsed DC PEMOCYB from tetrakis diethyl-amide hafnium and $N_2/He-H_2$ mixture. The depositions were carried out at temperature of below $300^{\circ}C$, total chamber pressure of 1 Torr and varying the deposition parameters. Influences of the nitrogen contents in the plasma decreased the growth rate and attributed to amorphous components, to the high carbon content of the film. In XRD analysis the domain lattice plain was (111) direction and the maximum microhardness was observed to be $2,460\;Hk_{0.025}$ for a Hf(C,N) film grown under -600 V and 0.1 flow rate of nitrogen. The optical emission spectra measured during PEMOCVD processes of Hf(C, N) film growth were also discussed. $N_2,\;N_2^+$, H, He, CH, CN radicals and metal species(Hf) were detected and CH, CN radicals that make an important role of total PEMOCVD process increased carbon content.

Biodegradation of Aromatic Compounds by Strains of Pseudomonas (Pseudomonas속 세균에 의한 방향족화합물 생분해)

  • 정윤창;김경남;최용진;양한철;송준상;서윤수
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.2
    • /
    • pp.100-108
    • /
    • 1989
  • Thirty-six aromatic compound biodegraders; 10 strains for benzoate, 10 for salicylate, 6 for m-toluate, and 10 for DL-camphor were isolated and taxonomically characterized. A mutant Pseudomonas strain, Ben 6-2, derived from Ben 6 revealed remarkably improved ability to metabolize benzoate. Thus enhancement of the average substrate removal rate from 5.2 to 11.0mg/$\ell$/ hr was attained by the mutant. Both of strains Sal 7 and Tol 2, degraders of salicylate and m-toluate respectively, were classified as Pseudomonas sup. Both strains were found to be extremely effective in metabolizing each aromatic substrates. The average substrate degradation rates in minimal salt media containing 2,200mg/$\ell$ of the substrate were calculated to be 40.1 mg/$\ell$/ hr for strain Sal 7 and 33.0mg/$\ell$/ hr for Tol 2. Cam 10, a camphor degrading strain was demonstrated to be capable of mineralizing benzoate, phenol, toluene, octane, cyclohexane and xylene as well as camphor. Strain 1040 isolated from Cam 10 after repented adaptation to 1,000 mg/$\ell$ m-toluate gained the ability to utilize toluate as a sole carbon source. The mutant Brew actively at the expense of a mixture of car-bon sources; camphor, m-toluate, benzoate and phenol (each: 200 mg/$\ell$) and utilized the substances in the preferential order of camphor, phenol, benzoate, and m-toluate. Among the biodegraders examined Cam 1040 and Tol 2 were detected to harbor plasmid. The plasmid from Cam 1001 was determined to be about 98kb, and evidenced to encode the enzyme(s) for the degradation of camphor. For the further diversification of the metabolic potentials of Cam 1040, the NAH 2 plasmid of Pseudomonas putida NCIB 9816 was transferred to Cam 1040 by conjugation. The exconjugant obtained, Cam 1043, proved to gain an additional ability to metabolize salicylate and naphthalene.

  • PDF

Bioactive Materials and Biological Activity in the Extracts of Leaf, Stem Mixture and Root from Angelica gigas Nakai (참당귀 잎, 줄기혼합물과 뿌리 추출물의 생리활성물질 및 그 활성작용)

  • Heo, Jin-Sun;Cha, Jae-Young;Kim, Hyun-Woo;Ahn, Hee-Young;Eom, Kyung-Eun;Heo, Su-Jin;Cho, Young-Su
    • Journal of Life Science
    • /
    • v.20 no.5
    • /
    • pp.750-759
    • /
    • 2010
  • The bioactive materials (phenolic compounds, flavonoids, minerals, decursin and decursinol angelate) and biological activities (DPPH [$\alpha,\alpha$'-diphenyl-$\beta$-picrylhydrazyl] free radical scavenging capability, reducing power, and tyrosinase activity) in the extracts of leaf, stem mixture (AGLS), and root (AGR) from Angelica gigas Nakai were examined by using water, hot water and ethanol solvent. The highest extract yield (21.89%) was found in the water extract of AGR. The highest concentrations of phenolic compounds and flavonoids in the ethanol extracts of AGLS and AGR were 14.99% and 14.79%. Major minerals of AGLS and AGR were K, Mg, Fe, Na and Ca. Decursin and decursinol angelate were the major ingredients of Angelica gigas, detected at 18.71 and 18.89 min of retention time by HPLC analysis, respectively. The highest concentrations of decursin and decursinol angelate in the Angelica gigas ethanol extract were found in root ($41.7\;{\mu}g/g$) and leaf ($34.04\;{\mu}g/g$). The highest free radical scavenging activity was found in the hot water extracts of AGLS and AGR, and its activity was stronger in all extracts of AGLS than AGR. The highest reducing power was found in the ethanol extracts of AGLS and AGR and this was dependent on the sample concentration. The hot water extracts of AGLS and AGR revealed the highest inhibition activity on tyrosinase. Overall, these results may provide the basic data needed to understand the biological activities of bioactive materials derived from Angelica gigas.

Remediation of Soil Contaminated by Chlorinated Ethylene Using Combined Application of Two Different Dechlorinating Microbial Cultures and Iron Powder (두 종류의 탈염소화미생물 배양액과 철분 첨가에 의한 염화에틸렌 오염토양 복원)

  • Lee, Tae-Ho;Kim, Hyeong-Seok
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.2
    • /
    • pp.55-65
    • /
    • 2003
  • The combined effect of bioaugmentation of dechlorinating bacterial cultures and addition of iron powder($Fe^0$ on reductive dechlorination of tetrachloroethylene(PCE) and other chlorinated ethylenes in a artificially contaminated soil slurry(60micromoles PCE/kg soil). Two different anaerobic bacterial cultures, a pure bacterial culture of Desulfitobacterium sp. strain Y-51 capable of dechlorinating PCE to cis-1,2-dechloroethylene(cis-DCE) and the other enrichment culture PE-1 capable of dechlorinating PCE completely to ethylene, were used for the bioaugmentation test. Both treatments introduced with the strain Y-51 and PE-1 culture (3mg dry cell weight/kg soil) showed conversion of PCE to cis-DCE within 40days. The treatments added with $Fe^0$(0.1-1.0%) alone to the soil slurry resulted in extended PCE dechlorination to ethylene and ethane and the dechlorination rate depended on the amount of $Fe^0$ added. The combined use of the bacterial cultures with $Fe^0$(0.1-1.0%)) showed the higher PCE dechlorination rate than the separated application and the pattern of PCE dechlorination and end-product formation was different from those of the separated application. When 0.1% of $Fe^0$ was added with the cultures, the treatments with the strain Y-51 and $Fe^0$ resulted in cis-DCE accumulation from PCE dechlorination, but the treatment with the enrichment culture and $Fe^0$ showed the more extended dechlorination via cis-DCE. These results suggested that the combined application of and the bactrial culture, specially the complete dechlorinating enrichment culture, is practically effective for bioremediation of PCE contaminated soil.

  • PDF