DOI QR코드

DOI QR Code

Effect of ethylene glycol on the nano-sized ZnO nanoparticles using polyol process

폴리올 공정을 이용한 에틸렌 글리콜이 나노 크기의 산화아연 나노입자에 미치는 영향

  • Dae-Hwan Jang (Advanced Materials and Processing Center, Institute for Advanced Engineering (IAE)) ;
  • Bo-Ram Kim (Recycle Research Lab, SAMSUNG SDI Co., Ltd) ;
  • Dae-Weon Kim (Advanced Materials and Processing Center, Institute for Advanced Engineering (IAE))
  • 장대환 (고등기술연구원 신소재공정센터) ;
  • 김보람 (삼성SDI 리사이클연구소) ;
  • 김대원 (고등기술연구원 신소재공정센터)
  • Received : 2024.07.01
  • Accepted : 2024.07.18
  • Published : 2024.08.31

Abstract

Zinc oxide nanoparticles were synthesized using the polyol method with ethylene glycol containing hydroxyl groups (-OH). It was confirmed that the zinc compounds prepared by the polyol method were a mixture of zinc carbonate hydroxide (Zn5(OH)6(CO3)2) and zinc oxide (ZnO) crystalline structures. Calcination at 400℃, 600℃ and 800℃ was performed to examine the effects of calcination temperature on the particle size, morphology and crystallinity of zinc oxide. ZnO powders of calcination at 800 ℃ was evaluated to particle size analysis from ethylene glycol containing precursor solution compared with distilled water based solution. The zinc oxide particles obtained from the former had a particle size of approximately 404 ± 51 nm, whereas those from the latter exhibited a more uniform nanoparticles morphology with a particle size of approximately 109 ± 29 nm. This demonstrates that the addition of ethylene glycol can control the influence of water molecules, enabling the direct synthesis of zinc oxide in the form of uniform nanoparticles.

산화아연 나노입자는 수산기(-OH)가 포함된 에틸렌 글리콜을 이용하여 폴리올 방법으로 제조하였다. 폴리올 방법으로 생성된 아연 화합물은 하이드록시탄산아연(Zinc carbonate hydroxide, Zn5(OH)6(CO3)2)과 산화아연(ZnO) 결정구조가 혼재함을 확인하였다. 400℃, 600℃ 및 800℃에서 하소하여, 하소 온도 조건에 따른 산화아연 입자 크기, 형상 및 결정성 영향을 확인하였다. 증류수를 이용한 황산 아연 전구체 용액과 에틸렌 글리콜이 첨가된 혼합 용액으로 제조된 황산 아연 전구체 용액을 각각 800℃에서 하소하여 제조된 산화아연 분말을 입도 분석하였다. 전자의 경우 약 404 ± 51 nm의 입자 크기를 갖는 반면, 후자의 경우 약 109 ± 29 nm로 보다 균일한 나노 입자 형태의 산화아연 제조가 가능하였다. 에틸렌 글리콜을 통해 물 분자 영향을 제어하여 직접적인 산화아연 제조 및 나노 입자 크기 형태로 제조가 가능함을 제시하였다.

Keywords

Acknowledgement

본 연구는 2021년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원을 받아 수행한 연구 과제입니다(철강재도약사업 No. 20016885).

References

  1. J.A. Park, J.H. Moon, S.J. Lee, S.C. Lim and T. Zyung, "Fabrication and characterization of ZnO nanofibers byelectro-spinning", Curr. Appl. Phys. 9 (2009) S210.
  2. M.J. Ji, J. Yoo and Y.I. Lee, "Diameter-controllable synthesis and enhanced photocatalytic activity of electrospun ZnO nanofibers", Korean J. Mater. Res. 29 (2019) 79.
  3. L. Vayssieres, K. Keis, S.E. Lindquist and A. Hagfeldt, "Purpose-built anisotropie metal oxide material: 3D highly oriented microrod array of ZnO", J. Phys. Chem. B 105 (2001) 3350.
  4. H.S. Kim and D.H. Kim, "A study on the growth pattern ZnO particles in chemical solutions", Korean J. Mater. Res. 15 (2005) 678.
  5. M.S. Kim, J.U. Kim, J.Y. Yoo, and J.G. Kim, "Sonochemical synthesis and photocatalytic characterization of ZnO nanoparticles", J. Korean Chem. Soc. 60 (2016) 34. https://doi.org/10.5012/JKCS.2016.60.1.34
  6. u. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho and H. Morkoc, "A comprehensive review of ZnO materials and devices", J. Appl. Phys. 98 (2005) 041301.
  7. M. Naseer, U. Aslam, B. Khalid and B. Chen, "Green route to synthesize zinc oxide nanoparticles using leafextracts of cassia fstula and melia azadarach and their antibacterial potential", Sci. Rep. 10 (2020) 9055.
  8. P. Sharma, M.R. Hasan, N.K. Mehto, Deepak, A. Bishoyi and J. Narang, "92 years of zinc oxide: has been studied by the scientific community since the 1930s-An overview", Sensors International 3 (2022) 100182.
  9. A. Kathalingam, H.C. Park, S.D. Kim, H.S. Kim, S. Velumani and T. Mahalingam, "Synthesis of ZnO nanorods using different precursor solutions and their two terminal device characterization", J. Mater. Sci. Mater. Electron. 26 (2015) 5724.
  10. A. Kathalingam, Y.S. Chae and J.K. Rhee, "Synthesis of multi-linked ZnO rods by microwave heating", Cryst. Res. Technol. 46 (2011) 517.
  11. A. Diallo, B.D. Ngom, E. Park and M. Maaza, "Green synthesis of ZnO nanoparticles by Aspalathus linearis: Structural & optical properties", J. Alloys Compound 646 (2015) 425.
  12. G. Sharmila, M. Thirumarimurugan and C. Muthukumaran, "Green synthesis of ZnO nanoparticles using Tecoma castanifolia leaf extract: characterization and evaluation of its antioxidant, bactericidal and anticancer activities", Microchemical J. 145 (2019) 578.
  13. N. Rathore and S.K. Sarkar, "Effect of different anions on ZnO morphology", Energy Procedia. 54 (2014) 771.
  14. K. Sahu, S. Choudhary, J. Singh, S. Kuriakose, R. Singhal and S. Mohapatra, "Facile wet chemical synthesis of ZnO nanosheets: effects of counter ions on the morphological, structural, optical and photocatalytic properties", Ceramics International 44 (2018) 23094.
  15. A. Islam, A. Sharma, R. Chaturvedi and P.K. Singh, "Synthesis and structural analysis of zinc oxide nano particle by chemical method", Materials Today: Proceedings 45 (2021) 3670.
  16. R. Singh and S. Dutta, "The role of pH and nitrate concentration in the wet chemical growth of nano-rods shaped ZnO photocatalyst", Nano-Structures & NanoObjects 18 (2019) 10025.
  17. T. Thilagavathi and D. Geetha, "Nano ZnO structures synthesized in presence of anionic and cationic surfactant under hydrothermal process", Appl Nanosci 4 (2014) 127.
  18. D.H. Jang, B.R. Kim and D.W. Kim, "Synthesis of Zn-intermediate from alkali agents and its transformation to ZnO crystallinity", J. the Korean Crystal Growth and Crystal Technology 31 (2021) 1.
  19. P. Basnet and S. Chatterjee, "Structure-directing property and growth mechanism induced by capping agents in nanostructured ZnO during hydrothermal synthesis-A systematic review", Nano-Structures &Nano-Objects 22 (2020) 100426.
  20. R. Hong, T. Pan, J. Qian and H. Li, "Synthesis and surface modification of ZnO nanoparticles", Chemical Engineering Journal 119 (2006) 71.
  21. D.S. Biron, V. Santos and C.P. Bergmann, "Synthesis and characterization of zinc oxide obtained by combining zinc nitrate with sodium hydroxide in polyol medium", Materials Research 23 (2020) 1.
  22. P.P. Mahamunia, P.M. Patil, M.J. Dhanavade, M.V. Badiger, P.G. Shadija, A.C. Lokhande and R.A. Bohara, "Synthesis and characterization of zinc oxide nanoparticles by using polyol chemistry for their antimicrobial and antibiofilm activity", Biochemistry and Biophysics Reports 17 (2019) 71.
  23. S. Soren, S. Kumar, S. Mishra, P.K. Jena, S.K. Verma and P. Parhi, "Evaluation of antibacterial and antioxidant potential of the zinc oxide nanoparticles synthesized by aqueous and polyol method", Microbial Pathogenesis 119 (2018) 145.
  24. J. Wojnarowicz, A. Opalinska, T. Chudoba, S. Gierlotka, R. Mukhovskyi, E. Pietrzykowska, K. Sobczak and W. Lojkowski, "Effect of water content in ethylene glycol solvent on the size of ZnO nanoparticles prepared using microwave solvothermal synthesis", J. of Nanomaterials. (2016) 2789871.
  25. X. Dong, A. Zhang and P. Yang, "Synthesis of ZnO microstructures in glycerol/water solution", Ceramics International 40 (2014) 141.
  26. B.W. Chieng and Y.Y. Loo, "Synthesis of ZnO nanoparticles by modified polyol method", Materials Letters 73 (2012) 78.
  27. S. Lee, S. Jeong, D. Kim, S. Hwang, M. Jeon and J. Moon, "ZnO nanoparticles with controlled shapes and sizes prepared using a simple polyol synthesis", Superlattices and Microstructures 43 (2008) 330.
  28. D.W. Kim, D.H. Jang and B.R. Kim, "A study on the zinc oxide crystalline powder synthesized by zinc chloride solution and sodium-based alkali precipitants", J. of the Korean Crystal Growth and Crystal Technology 33 (2023) 15. https://doi.org/10.6111/JKCGCT.2023.33.1.015
  29. L. Xue, X. Mei, W. Zhang, L. Yuan, X. Hu, Y. Huang and K. Yanagisawa, "Synthesis and assembly of zinc hydroxide sulfate large flakes: Applicationin gas sensor based on a novel surface mount technology", Sens. Actuators B 147 (2010) 495.
  30. T. Staminirova, N. Petrova and G. Kirov, "Thermal decompostion of zinc hydroxy-sulfate-hydrate minerals", J. Therm. Anal. Calorim. 125 (2016) 85.
  31. J. Moghaddam, S.B. Ghaffari, R.S. Mamoory and S. Mollaesmail, "The study on the crystallization donditions of Zn5(OH)6(CO3)2 and its effect on precipitation of ZnO nanoparticles from purified zinc ammoniacal solution", Taylor & Francis 44 (2014) 895.
  32. J.H. Lee, S.H. Kim, J.W. Kim, M.H. Lee and Y.D. Kim, "Synthesis of platinum nanoparticles by liquid phase reduction", J. Kor. Powd. Met. Inst. 19 (2012) 60.
  33. O.S. Kwon, K.H. Kang and D.K. Lee, "Synthesis of Metal doped ZnO nanoclusters by microwave assisted polyol process", J. Korean Oil Chemists'Soc. 31 (2014) 525.
  34. P. Nithiya, CH.S. Chakra and CH. Ashok, "Synthesis of TiO2 and ZnO nanoparticles by facile polyol method for the assessment of possible agents for seed germination", Materials Today. Proceedings 2 (2015) 4483.
  35. T.E.P. Alves, C. Kolodziej, C. Burda and A. Franco, "Effect of particle shape and size on the morphology and optical properties of zinc oxide synthesized by the polyol method", Materials and Design 146 (2018) 125.
  36. A. Moezzi, M. Cortie, A. Dowd and A. McDonagh, "On the formation of nanocrystalline active zinc oxide from zinc hydroxide carbonate", J. Nanopart Res. 16 (2014) 2344.