• Title/Summary/Keyword: 혼합타설

Search Result 36, Processing Time 0.02 seconds

Quality Control Method for the Concrete from Multiple Suppliers (콘크리트 혼합타설시 품질확보 방안)

  • Kim, Kyung-Hoon;Lee, Sang-Hak
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.3
    • /
    • pp.227-234
    • /
    • 2018
  • Concrete mix design controls the various concrete properties such as workability and strength. Fresh concrete requires workability and the hardened concrete requires compressive strength. If using the concrete from different supplier concurrently, the concrete placed can show different properties unlike originally designed. However most of construction sites place the concrete from several companies. One of the predictable problems is whether the ultimate performance of concrete achieves the originally designed performance after placing the concrete from several companies. Therefore this research aims to keep the concrete quality in the above cases. This research has been done through literature review, questionnaire and the verification at the sample construction site. A literature review describes the general characteristics and quality control of concrete and a questionnaire describes the awareness and implementation of Korean Construction Specification(KCS). The production capacity and the delivery capacity of concrete suppliers is smaller than the daily quantity required on the sample site, therefore the placing of the concrete with different mixing ratio is inevitable and it can not keep the KCS. As a conclusion, this research proposed 5 alternatives and one of them has been adopted, i.e. to unify the concrete mix design of multiple concrete suppliers.

Behaviors of Lightweight Foamed Soils Considering Underwater Curing and Water Pressure Conditions (수중양생 및 수압조건을 고려한 경량기포혼합토의 거동)

  • Yoon Gil-Lim;You Seung-Kyong
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.4
    • /
    • pp.21-29
    • /
    • 2005
  • Lightweight Foamed Soil (LWFS) could be the substitute of normal soils used in backfill to earth structures and embankment materials far soft ground improvement in port and harbor project because of its effectiveness in settlement reduction and earth pressure decrease due to its lightness. A series of triaxial and unconfined compression tests were performed to investigate behaviors of LWFS composed of dredged soils, cement and air foam, and cured at underwater conditions. The density of LWFS will increase if LWFS is cured at underwater conditions because high water pressure makes air foam disappear or demolish during the curing compared with LWFS cured at normal air conditions. This paper is to find the mechanical behaviors of LWFS cured at seawater depth of 5.0 m and 10.0 m, respectively, which simulates underwater curing conditions by underwater pressure simulator chamber developed during this study. In addition, new normalized factor formula, which takes account of mixing design conditions determining compressive strength of LWFS, was proposed to consider mixing design factor fur LWFS.

A Study on the Flowable Backfill with Waste Foundry Sand for Retaining Wall (유동특성을 이용한 폐주물사 혼합물의 옹벽뒷채움재 연구)

  • 조재윤;이관호;이인모
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.17-30
    • /
    • 2000
  • The objective of this study is to evaluate the lateral earth pressure and the stability of small scale retaining wall with waste foundry sand(WFS) mixtures as a controlled low strength materials (CLSM). Three different types of WFS, like Green WFS, Hurane WFS and Coated WFS, were used in this study, and fly ash of Class F type was adopted. To evaluate the lateral earth pressure and the stability of retaining wall, two different samll scale retaining wall tests, which are called an artificially controlled strain method and a natural strain method, were carried out. In case of an artificially controlled strain method, the coefficient of lateral earth pressure, just after backfilling of WF mixtures, was around 0.8 to 1.0, and most of earth pressure was dissipated within 12 hours. In case of a natural strain method, two steps of stage constructions were employed. The mixtures of Hurane WFS and Coated WFS showed fast decrease of earth pressure due to a relatively good drainage. Judging from the sta bility of retaining wall for overturning and sliding, two steps of stage construction for 2 days were enough to finish the backfill of 6-m height of retaining wall. Also, considering the curling effect of WFS mixtures, the stability of retaining wall increased as curling time increased.

  • PDF

Analysis of the Characteristics of Manufactured Concrete, according to the Type of Admixture used when Remixing and Placing it (혼화제 종류별로 제조된 콘크리트의 재 혼합 타설시 특성 분석)

  • Ryu, Hyun-Gi;Shin, Sang-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.5
    • /
    • pp.95-102
    • /
    • 2010
  • In recent years, the demand for the development of high quality and cost effective materials, as well as the competition to ensure a diverse and sufficient amount of ready-mixed concrete, has been increasing rapidly. In this experiment, concretes made with different admixtures are blended with each other in different combinations and ratios, in order to identify potential problems. The first test was a slump level test, in which all of the concretes met the required numbers, as they also did in the test for air content. Plain organic acid concrete scored the highest in bleeding amount, but organic acid mix in general showed a similar outcome. In the early measurement of compressive strength, plain naphthalene concrete was the strongest. Of the blends, the 5:5 mix of organic acid and naphthalene was the strongest. In the standard measurement, the 5:5 mix of naphthalene and lignin was the strongest. Tensile strength tests revealed similar results. Length change rate proved to be greater in blended concrete than in plain concrete, and dry shrinkage rate was highest in the 7:3 ratio blends. Through SEM photo analysis, it was confirmed that the 7:3 ratio blends contained more micro-voids. In conclusion, with the exception of a specific few combinations, it was found that the blending of different types of concrete is undesirable due to the delayed coagulation time as well as the early decrease in strength.

A Study to keep the Concrete Quality when pouring concurrently the Concrete with Different Mixing Ratio - Based on Gunsan D Project (배합비가 상이한 콘크리트의 혼합 타설시 품질확보에 관한 연구 -군산 D PROJECT를 중심으로-)

  • Kim, Kyung-Hoon;Lee, Sang-Hak
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.82-83
    • /
    • 2017
  • The samll-medium sized cities do not have enough infrastructure for the construction work, especially in terms of concrete supply. This research surveyed the capacity of remicon companies in Gunsan related with production and delivery. Their production capacity is bigger than the daily quantity required, however the delivery capacity is not enough to supply the daily quantity required and it is inevitable to use the several remicon using different admixture. It might cause the harm to the structure. This research studied the way to remove the quality risk when using different admixture at the same time.

  • PDF

Improvement Effects of Soft Clay Soils with Varying Installation Area Ratio of Quicklime Piles (생석회말뚝 타설면적비의 변화에 따른 연약점토지반의 개량효과)

  • 임종석
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.5
    • /
    • pp.37-42
    • /
    • 2001
  • 생석회말뚝공법은 연약점토에 대한 유용한 지반개량공법으로서 그 개량효과는 매우 빨리 나타난다. 본 연구에서는 생석회말뚝 타설 면적비에 따라 연약점토지반의 함수비나 전단강도 등의 특성이 어떻게 변화하는가를 규명하고자 하였다. 이를 위하여 철제상자에 연약점토로 모형지반을 조성하고 소요 면적비로 생석회말뚝을 타설한 후 적당한 시간간격을 두고 함수비와 전단강도를 측정하는 실내 모형시험을 수행하였다. 그 결과 면적비가 증가함에 따라 함수비의 감소량과 전단강도의 증가량은 커지지만 면적비가 약 10%를 초과하면 별 차이를 보이지 않으며 같은 면적비에서 생석회말뚝의 지름이 작고 간격이 좁으면 함수비의 감소량과 전단강도의 증가량은 더 크다는 것을 규명하였다. 또한 같은 양을 사용했다면 생석회말뚝공법보다 생석회혼합공법을 적용한 흙의 전단강도 증가량이 더 크다는 것을 알 수 있었다.

  • PDF

Shear Strength and Compressibility of Oyster Shell-Sand Mixtures for Sand Compaction Pile (SCP공법 적용을 위한 굴패각-모래 혼합토의 전단과 압축특성)

  • Yoon Gil-Lim;Yoon Yeo-Won;Chae Kwang-Seok;Kim Jae-Kwon
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.9
    • /
    • pp.17-23
    • /
    • 2004
  • Strength and deformation characteristics of oyster shell-sand mixtures were investigated to utilize waste oyster shell being treated as a waste material. Standard penetration test (SPT) is a common method to obtain in-situ strength in sand. However, in case of oyster shell-sand mixtures, there was no information between SPT N-value and internal friction angle of mixture soils. In this paper SPT experiments from several large scaled model chamber tests and large scaled direct shear tests were carried out with varying unit weight of oyster shell-sand mixtures. Appropriate correlations were in tile study observed among N-value, unit weight and internal friction angle, which make it possible to estimate in-situ strength from SPT and the coefficient of volume compressibility from the confined compression tests to compute the settlement of oyster shell-sand mixtures.

Behavior Characteristics of Underground Flexible Pipe Backfilled with Lightweight Foamed Soil (경량기포혼합토로 뒷채움된 연성매설관의 거동특성)

  • Lee, Yong-Jae;Yea, Geu-Guwen;Park, Sang-Won;Kim, Hong-Yeon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.1
    • /
    • pp.43-50
    • /
    • 2015
  • Lightweight Foamed Soil (LWFS) is a useful material for underground pipe backfill because of reusability of excavated soil and no compaction effect. In this research, a pilot test is carried out and monitoring results are analyzed to investigate behaviors of a flexible pipe, when LWFS is applied as a backfill material. Simultaneously, they are compared with another test case which is backfilled with Saemangeum dredged soil. As a result, the vertical earth pressure of the case backfilled with LWFS slurry presents that decreases as much as 25.6% in comparison with dredged soil and it is only within 10% after solidification. In case backfilled with dredged soil, the horizontal earth pressure is more than 3.6 times of the case used by LWFS and the vertical and horizontal deformation is more than 3.2 and 2.6 times of the case, respectively. It presents excellent effects on earth pressure and deformation reduction of LWFS. The stresses measured at the upper side of the pipe generally present compressive aspects in case backfilled with dredged soil. However, they present tensile aspects in case of LWFS. It is because of negative moment occurred at the center of the pipe due to the buoyancy from LWFS slurry. Conclusively, LWFS using Saemangeum dredged soil is very excellent material to use near the area in comparison with the dredged soil. However, the countermeasure to prevent the buoyancy is required.

Strength of Improved Soil on the Work-conditions of Deep Mixing Method (시공조건에 따른 심층혼합처리 개량체의 강도에 관한 연구)

  • Lee, Kwang-Yeol;Yoon, Sung-Tai;Kim, Sung-Moo;Han, Woo-Sun
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.7
    • /
    • pp.99-104
    • /
    • 2007
  • The deep soil mixing, on ground modification technique, has been used for many diverse applications including building and bridge foundations, port and harbor foundations, retaining structures, liquefaction mitigation, temporary support of excavation and water control. This method has the basic objective of finding the most efficient and economical method for mixing cement with soil to secure settlements through improvement of stability on soft ground. In this research, the experiments were conducted on a laboratory scale with the various test conditions of mixing method; the angle of mixing wing, mixing speed. Strength and shapes of improved soil of these test conditions of deep mixing method were analysed. From the study, it was found that the mixing conditions affect remarkably to the strength and shapes of improved soils.

A Study on a Compression Index for Settlement Analysis of SCP Treated Ground Using Back Analysis (역해석을 이용한 모래다짐말뚝(SCP)으로 개량된 연약점토지반의 압축지수 결정에 관한 연구)

  • Hwang, Sungpil;Im, Jongchul;Kwon, Jeonggeun;Kang, Yeounike;Joo, Ingon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.7
    • /
    • pp.5-14
    • /
    • 2010
  • The paper processed settlement analysis using Finite Elements Method(FEM). Because Stress Distribution Ratio has to be decreased, for settlement analysis of soft clay deposit improved by sand compaction piles(SCP). Back analysis was processed comparing the measured settlements of laboratory model tests and finite element analysis where the SCP treated area was assumed as mixed ground with clay deposit rather than being a composite ground. The paper proposes a methodology which employs a compression index($C_c$) for settlement analysis of soft clay deposit improved by sand compaction piles from the back analysis. This approach is applied to a field measurement case(A revetment founded on the SCP improved clay deposit with the replacement ratio of 45%).