• Title/Summary/Keyword: 혼합촉매

Search Result 436, Processing Time 0.036 seconds

Bulk Polymerization of L-lactide with Mixed Aluminum Organometallic Catalysts (Al계 유기금속화합물 혼합촉매 시스템을 이용한 L-lactide 벌크중합 특성 연구)

  • Noh, Yee-Hyeon;Ko, Young-Soo
    • Polymer(Korea)
    • /
    • v.36 no.1
    • /
    • pp.53-58
    • /
    • 2012
  • The differences between single and mixed aluminium catalyst systems in the bulk polymerization of L-lactide were studied. $Al(O-i-Pr)_3$, TMA, TOA and TIBA were employed for the mixed-catalyst systems, and TIBA was chosen as a reference catalyst. For the $Al(O-i-Pr)_3$/TIBA catalyst system, the conversion of polymerization increased as the composition of $Al(O-i-Pr)_3$ in the mixed catalyst increased. The molecular weight of the resulting PLA reached to about 13000 g/mol, and the polydispersity index of the polymer from the $Al(O-i-Pr)_3$/TIBA catalyst was slightly increased than that of single catalyst. The higher molecular weight tail or shoulder was revealed in the GPC curve. The conversion of the TOA/TIBA catalyst system decreased as the composition of TOA in the mixed catalyst increased. The molecular weight of PLA prepared with TOA/TIBA catalysts increased up to 14000 g/mol. The Al compounds-mixed catalysts could produce a higher molecular weight tail or shoulder in the GPC curve, which may result in enhancement of mechanical properties of PLA.

Study on Solution Polymerization Behaviors by Mixed Aluminium Compound Catalysts (알루미늄 화합물 혼합촉매계의 L-lactide 용액중합 특성 연구)

  • Yoo, Ji-Yun;Kim, Da-Hee;Ko, Young-Soo
    • Polymer(Korea)
    • /
    • v.36 no.5
    • /
    • pp.593-598
    • /
    • 2012
  • Solution polymerization behaviors of L-lactide using single and mixed aluminium catalyst systems were studied. Triisobutylaluminium (TIBA) was a reference catalyst for mixing. For the $Al(O-i-Pr)_3$/TIBA catalytic systems, the molecular weight of the resulting polylactide (PLA) decreased as the composition of $Al(O-i-Pr)_3$ increased. The higher molecular weight shoulder was revealed in their GPC curve. At TIBA of 80 mol% a bimodal GPC curve was shown. The conversion in the trimethylaluminium (TMA)/TIBA catalysts system decreased as the composition of TMA in the mixed catalyst increased. The conversion in the trioctylaluminium (TOA)/TIBA catalysts system decreased as the composition of TOA in the mixed catalyst increased. The unimodal molecular weight distribution was observed with the TOA/TIBA catalyst systems. The Al compounds-mixed catalyst could produce a higher molecular weight shoulder in the GPC curve.

A New Catalytic System for Methylchlorosilanes(MCS) Synthesis (Methylchlorosilanes 합성촉매에 관한 연구)

  • Cho, Chul Kun;Han, Kee Do
    • Applied Chemistry for Engineering
    • /
    • v.8 no.5
    • /
    • pp.804-810
    • /
    • 1997
  • A new catalyst system composed of a main catalyst(copper chloride) and promotors of zinc chloride, tin, and cadminum showed excellent performances in the MCS synthesis from silicon and methylchloride. The mixture of catalyst/silicon(5/95), Zn/Cu=0.1, Sn/Cu=0.001, and Cd/Cu=0.001 was mixed in a slurry phase and activated into the contact mass, then it was used for MCS synthesis. The average selectivity was 92% at the silicon consumption of 92% and reaction rate was 175(g-MCS/hr.kg-silicon) at conversion of silicon.

  • PDF

Synergistic Effects of Mo-V Based Mixed Oxide Catalysts for Acrolein Oxidation(I) (아크로레인 산화용 Mo-V 계 혼합산화물 촉매의 상승효과(I))

  • Na, Suk-Eun;Kim, Kyung-Hoon;Chung, Jong-Shik;Park, Dae-Won
    • Applied Chemistry for Engineering
    • /
    • v.3 no.4
    • /
    • pp.717-721
    • /
    • 1992
  • Mechanical mixtures of vanadium molybdate and copper molybdate catalysts prepared by coprecipitation method, and those of $MoO_3$ and $V_2O_5$ were used to study the synergistic effects between each metal oxide for the selective oxidation of acrolein. The catalytic activity results revealed that the conversion of acrolein and yield of acrylic acid were increased with the mixture catalysts and it could be explained by a remote control mechanism. Thermal gravimetric analysis confirmed the evolution of lattice oxygen in the mixture catalysts.

  • PDF

Effect of Pt-Sn/Al2O3 catalysts mixed with metal oxides for propane dehydrogenation (프로판 탈수소 반응에 미치는 금속산화물과 혼합된 Pt-Sn/Al2O3 촉매의 영향)

  • Jung, Jae Won;Koh, Hyoung Lim
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.401-410
    • /
    • 2016
  • The $Pt-Sn/Al_2O_3$ catalysts mixed with metal oxides for propane dehydrogenation were studied. $Cu-Mn/{\gamma}-Al_2O_3$, $Ni-Mn/{\gamma}-Al_2O_3$, $Cu/{\alpha}-Al_2O_3$ was prepared and mixed with $Pt-Sn/Al_2O_3$ to measure the activity for propane dehydrogenation. As standard sample, $Pt-Sn/Al_2O_3$ catalyst mixed with glassbead was adopted. In the case of catalytic activity test after non-reductive pretreatment of catalyst and metal oxide, $Pt-Sn/Al_2O_3$ mixed with $Cu-Mn/{\gamma}-Al_2O_3$ showed higher conversion of 15% and similar selectivity at $576.5^{\circ}C$, compared to conversion of 8% in standard sample. In the case of catalytic activity test after reductive pretreatment of catalyst and metal oxde, $Cu/{\alpha}-Al_2O_3$ showed higer yield than standard sample. But, increase of yield of most of samples after reductive pretreatment was not significant, so it was found that lattice oxygen of $Cu-Mn/{\gamma}-Al_2O_3$ is effective to propane dehydrogenation.

Evaluation of Bond Performance of Self-Healing Agents Using Single lap Shear Test (Single Lap 전단시험을 적용한 자가치료제의 접착성능 평가)

  • 윤성호;박희원;허광수
    • Composites Research
    • /
    • v.17 no.4
    • /
    • pp.40-46
    • /
    • 2004
  • A single lap shear test was used to investigate the effects of the ratio of a catalyst to a self-healing agent and curing temperature on the bond performance of autonomic polymer composites. DCPD (dicyclopentadiene), ENB (5-ethylidene-2-norbornene), and their mixture were used as self-healing agents and bis(triclohexylphosphine) benzyllidine ruthenium (IV) dichloride Grubbs' catalyst was used as a catalyst. During the experiments, the catalyst ratios of 1.0wt% and 0.5wt% were applied to DCPD, the catalyst ratio of 0.lwt% was applied to ENB, and the catalyst ratio of 0.5wt% was applied to the mixtutes of DPCD and ENB. In addition, the curing temperatures of $25^{\circ}C$, $60{\circ}C$, and $80^{\circ}C$ were considered. According to the results, the higher catalyst ratio and the longer curing time were required to obtain more stabilized bond shear strength of DCPD. ENB with a lower catalyst ratio was cured faster than DCPD. Unlike DCPD, ENB stabilized after a steady fall from its peak as the curing time increased. Moreover, the mixtures of DCPD and ENB revealed similar curing behavior to ENB, but the increase in mixture ratio of ENB to DCPD caused curing process to be faster. Also the increase in curing temperature caused the bond shear strength to be higher and the curing time to be quicker.

A Study of $C_9$-aldehyde Synthesis from n-Butene (노르말부텐으로부터 $C_9$-알데히드 합성에 관한 연구)

  • Jeon, Jong-Ki;Park, Seong-Ki;Park, Young-Kwon
    • Clean Technology
    • /
    • v.14 no.3
    • /
    • pp.176-183
    • /
    • 2008
  • The purpose of this study is to upgrade the catalysts for synthesizing mixed octenes using normal butene and the catalysts for synthesizing $C_9$-aldehyde through hydroformylation of mixed octenes with syngas. The in-line activation method with circulating activating solution was effective for activation of the $NiO/A1_{2}O_3$ catalyst. The reason for catalyst deactivation may be ascribed to physi-sorbed materials or oligomers which block pore entrance and then prevent active sites from participating a reaction. Continuous distillation apparatus was used for separating mixed octenes from dimerization products. When reflux ratio was above 3 : 1, mixed octene fraction of which purity was above 99.57% was obtained. In $C_9$-aldehyde synthesis through hydroformylation of mixed octenes, we investigated a performance of ligand which increased catalyst stability as well as activity of Co catalyst. The results indicated that TPPO, NMP, NDMA, and succinonitrile were suitable ligand for increasing initial activity and reducing loss of Co during catalyst recovery.

  • PDF

석탄 촤-수증기 가스화반응에서 알카리 금속염과 전이금속염 혼합물의 촉매활성

  • 이운재;김상돈
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1994.05a
    • /
    • pp.9-14
    • /
    • 1994
  • 알카리금속염 (K$_2$CO$_3$, $K_2$SO$_4$). 알카리 토금속염 (Ba(NO$_3$)$_2$), 철족금속염(Ni(NO$_3$)$_2$, FeSO$_4$) 으로 이루어진 여러가지 혼합물들이 반응온도 700~85$0^{\circ}C$ 하의 촤-수증기 가스화반응에서 나타내는 촉매활성을 열천칭 반응기를 사용하여 측정하였다. 비촉매 가스화반응에서 초기반응성은 수증기 분압에 비례하였다. 촉매 가스화반응에서 단일염 촉매의 경우 $K_2$CO$_3$ 가 가장 큰 활성을 나타내었으며, 다른 염들은 낮은 활성을 보였다. 혼합염의 경우 $K_2$SO$_4$에 철족염을 부가함에 따라 반응속도가 향상되었으며, $K_2$SO$_4$+Ni(NO$_3$)$_2$가 가장 큰 촉매활성을 나타내었다. $K_2$SO$_4$와 Ni(NO$_3$)$_2$ 의 촉매 활성은 담지량에 따라 증가하며, 석탄의 등급에 따라 감소하였다. $K_2$SO$_4$와 Ni(NO$_3$)$_2$의 혼합비는 같은 몰비로 혼합하였을때 가장 큰 활성을 나타내었다.

  • PDF

The Combustion Characteristice of the Self Preheating Type Catalyic Heat Exchanger (자체 예열식 촉매 열 교환식 연소특성)

  • 유상필;송광섭;서용석;조성준;류인수
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2001.05a
    • /
    • pp.45-52
    • /
    • 2001
  • The study on the heat exchanger with catalytic combustion was performed as the development of the catalytic combustion applications. This study tried to achieve the both goals-the mixture preheating and the heat transfer to working fluid simultaneously by using the steady state catalytic combustion. The combustion characteristics were investigated with the quantitative, qualitative experimental variants of the mixture. In addition, the temperature distribution of catalytic layer was investigated to investigate the correlation between the combustion characteristics and the heat balance of the catalytic layer. As a result, the steady state reaction within the appropriate range of temperature is the critical factor in catalytic applications. To get this, the sensible control of both the mixture flow and the heat balance of catalytic layer were required.

  • PDF

Preparation and Reactivity of Cu-Zn-Al Based Hybrid Catalysts for Direct Synthesis of Dimethyl Ether by Physical Mixing and Precipitation Methods (물리혼합 및 침전법에 의한 DME 직접 합성용 Cu-Zn-Al계 혼성촉매의 제조 및 반응특성)

  • Bang, Byoung Man;Park, No-Kuk;Han, Gi Bo;Yoon, Suk Hoon;Lee, Tae Jin
    • Korean Chemical Engineering Research
    • /
    • v.45 no.6
    • /
    • pp.566-572
    • /
    • 2007
  • Two hybrid catalysts for the direct synthesis of DME were prepared and the catalytic activity of these catalysts were investigated. The hybrid catalyst for the direct synthesis of DME was composed as the catalytic active components of methanol synthesis and dehydration. The methanol synthesis catalyst was formed from the precursor contained Cu and Zn, the methanol dehydration catalyst was used ${\gamma}-Al_2O_3$. As PM-CZ+D and CP-CZA/D, Two hybrid catalysts were prepared by physical mixing method (PM-CZ+D) and precipitation method (CP-CZA/D), respectively. PM-CZ+D was prepared by physically mixing methanol synthesis catalyst and methanol dehydration catalyst, CP-CZA/D was prepared by depositing Cu-Zn or Cu-Zn-Al components on ${\gamma}-Al_2O_3$. The crystallinity and the surface morphology of synthesized catalyst were analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM) to investigate the physical property of prepared catalyst. And BET surface area by $N_2$ adsorption and the surface area of Cu by $N_2O$ chemisorption were investigated about the hybrid catalysts. In addition, catalytic activity of these hybrid catalysts was examined with varying reaction conditions. At that time, the reaction temperature of $250{\sim}290^{\circ}C$, the reaction pressure of 50~70 atm, the $[H_2]/[CO]$ mole ratio of 0.5~2.0 and the space velocity of $1,500{\sim}6,000h^{-1}$ were investigated the catalytic activity. From these results, it was confirmed that the reactivity of CP-CZA/D was higher than that of PM-CZ+D. When the conditions of reaction temperature, pressure, $[H_2]/[CO]$ ratio and space velocity were $260^{\circ}C$, 50 atm and 1.0, $3,000h^{-1}$ respectively, CO conversion using CP-CZA/D hybrid catalyst was 72% and the CO conversion of CP-CZA/D was more than 20% compared with the CO conversion of PM-CZ+D. It was known that Cu surface area of CP-CZA/D hybrid catalyst was higher than that of hybrid PM-CZ+D catalyst using $N_2O$ chemisorption. It was assumed that the catalytic activity was improved because Cu particle of hybrid catalyst prepared by precipitation method was well dispersed.