DOI QR코드

DOI QR Code

Study on Solution Polymerization Behaviors by Mixed Aluminium Compound Catalysts

알루미늄 화합물 혼합촉매계의 L-lactide 용액중합 특성 연구

  • Yoo, Ji-Yun (Department of Chemical Engineering, Kongju National University) ;
  • Kim, Da-Hee (Department of Chemical Engineering, Kongju National University) ;
  • Ko, Young-Soo (Department of Chemical Engineering, Kongju National University)
  • Received : 2012.01.28
  • Accepted : 2012.03.26
  • Published : 2012.09.25

Abstract

Solution polymerization behaviors of L-lactide using single and mixed aluminium catalyst systems were studied. Triisobutylaluminium (TIBA) was a reference catalyst for mixing. For the $Al(O-i-Pr)_3$/TIBA catalytic systems, the molecular weight of the resulting polylactide (PLA) decreased as the composition of $Al(O-i-Pr)_3$ increased. The higher molecular weight shoulder was revealed in their GPC curve. At TIBA of 80 mol% a bimodal GPC curve was shown. The conversion in the trimethylaluminium (TMA)/TIBA catalysts system decreased as the composition of TMA in the mixed catalyst increased. The conversion in the trioctylaluminium (TOA)/TIBA catalysts system decreased as the composition of TOA in the mixed catalyst increased. The unimodal molecular weight distribution was observed with the TOA/TIBA catalyst systems. The Al compounds-mixed catalyst could produce a higher molecular weight shoulder in the GPC curve.

본 연구에서는 Al계 화합물 혼합촉매 시스템의 L-lactide 용액중합을 실시하여 단일 Al계 화합물과 Al계 혼합화합물의 용액중합 특성의 차이를 비교하였다. $Al(O-i-Pr)_3$와 triisobutylaluminium(TIBA)를 혼합한 촉매의 경우 생성된 polylactide(PLA)의 분자량은 $Al(O-i-Pr)_3$의 조성이 증가할수록 대체적으로 감소하였다. 분자량 분포곡선은 혼합촉매 시스템의 경우 고분자량 부분에서 shoulder가 형성되었으며 TIBA가 80%인 경우에는 거의 bimodal 형태의 곡선을 가졌다. Trimethylaluminium(TMA)와 TIBA를 혼합한 촉매를 이용한 결과 TMA의 조성비가 증가할수록 전환율은 감소하였다. Trioctylaluminium(TOA)와 TIBA를 혼합한 촉매를 이용하여 생성된 PLA의 전환율은 TOA의 양이 증가함에 따라 점점 감소하였다. 분자량 분포곡선은 TOA 조성비가 40%부터 크게 줄기 시작하여 unimodal 특성을 보였다. 이러한 다양한 조합의 Al계 혼합촉매 시스템을 통해 GPC 곡선에서 PLA의 고분자량 shoulder을 형성할 수 있다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. M. Okada, Prog. Polym. Sci., 27, 87 (2002). https://doi.org/10.1016/S0079-6700(01)00039-9
  2. Y. H. Kim and S. H. Kim, J. Korean Ind. Eng. Chem., 3, 386 (1992).
  3. E. Chiellini and R. Solaro, Adv. Mater., 8, 305 (1996). https://doi.org/10.1002/adma.19960080406
  4. S. J. Jeong, G. S. Kwak, I. T. Jung, D. H. Lee, H. J. Roh, and K. B. Yoon, Polymer(Korea), 32, 56 (2008).
  5. Y. Hayashi, S. Yoshioka, Y. Aso, A. L. W. Po, and T. Terao, Pharm. Res., 11, 337 (1994). https://doi.org/10.1023/A:1018936314861
  6. H. Tsuji, Y. Echizen, and Y. Nishimura, Polym. Degrad. Stabil., 91, 1128 (2006). https://doi.org/10.1016/j.polymdegradstab.2005.07.007
  7. Y. Ikada and H. Tsuji, Macromol. Rapid. Commun., 21, 117 (2000). https://doi.org/10.1002/(SICI)1521-3927(20000201)21:3<117::AID-MARC117>3.0.CO;2-X
  8. Z. Tang and V. C. Gibson, Eur. Polym. J., 43, 150 (2007). https://doi.org/10.1016/j.eurpolymj.2006.09.023
  9. R. E. Drumright, P. R. Gruber, and D. E. Henton, Adv. Mater., 12, 1841 (2000) https://doi.org/10.1002/1521-4095(200012)12:23<1841::AID-ADMA1841>3.0.CO;2-E
  10. W. J. Kim, J. H. Kim, S. H. Kim, and Y. H. Kim, Polymer(Korea), 24, 431(2000).
  11. S. H. Lee, D. Kim, J. H. Kim, D. H. Lee, S. J. Shim, J. D. Nam, H. Kye, and Y. Lee, Polymer(Korea), 28, 519 (2004).
  12. K. B. Aubrecht, M. A. Hillmyer, and W. B. Tolman. Macromolecules, 35, 644 (2002). https://doi.org/10.1021/ma011873w
  13. A. C. Albertsson and I. K. Varma, Biomacromolecules, 4, 1466 (2003). https://doi.org/10.1021/bm034247a
  14. Z. H. Tang, X. S. Chen, Q. Z. Hang, X. C. Bian, L. X. Yang, L. H. Piao, and X. B. Jing, J. Polym. Sci. Part A: Polym. Chem., 41, 1934 (2003). https://doi.org/10.1002/pola.10740
  15. H. R. Kricheldorf and A. Serra, Polym. Bull., 14, 497 (1985).
  16. S. H. Hyon, K. Jamshidi, and Y. Ikada, Polym. Prep., 24, 6 (1983).
  17. B. Eling, S. Gogolewski, and A. J. Pennings, Polymer, 23, 1587 (1982). https://doi.org/10.1016/0032-3861(82)90176-8
  18. J. A. P. P. Vandick, J. A. N. Smith, F. E. Kohn, and J. Feijen, J. Polym. Chem., 21, 197 (1983). https://doi.org/10.1002/pol.1983.170210121
  19. J. W. Leenslag, S. Gogolewski, and A. J. Pennings, J. Polym. Sci., 29, 2829 (1984).
  20. Y. H. Noh and Y. S. Ko, Polymer(Korea), 36, 1 (2012).
  21. R. Mehta, V. Kumar, H. Bhunia, and S. N. Upadhyay, J. Macromol. Sci. Part C: Polym. Rev., 45, 337 (2005).

Cited by

  1. Polymerization of L-lactide Using Methylalumionxane vol.39, pp.3, 2015, https://doi.org/10.7317/pk.2015.39.3.365
  2. Ti(dibenzoylmethane)2(O-i-Pr)2 합성과 L-락티드 개환중합 vol.42, pp.2, 2018, https://doi.org/10.7317/pk.2018.42.2.261