Browse > Article
http://dx.doi.org/10.7317/pk.2012.36.5.593

Study on Solution Polymerization Behaviors by Mixed Aluminium Compound Catalysts  

Yoo, Ji-Yun (Department of Chemical Engineering, Kongju National University)
Kim, Da-Hee (Department of Chemical Engineering, Kongju National University)
Ko, Young-Soo (Department of Chemical Engineering, Kongju National University)
Publication Information
Polymer(Korea) / v.36, no.5, 2012 , pp. 593-598 More about this Journal
Abstract
Solution polymerization behaviors of L-lactide using single and mixed aluminium catalyst systems were studied. Triisobutylaluminium (TIBA) was a reference catalyst for mixing. For the $Al(O-i-Pr)_3$/TIBA catalytic systems, the molecular weight of the resulting polylactide (PLA) decreased as the composition of $Al(O-i-Pr)_3$ increased. The higher molecular weight shoulder was revealed in their GPC curve. At TIBA of 80 mol% a bimodal GPC curve was shown. The conversion in the trimethylaluminium (TMA)/TIBA catalysts system decreased as the composition of TMA in the mixed catalyst increased. The conversion in the trioctylaluminium (TOA)/TIBA catalysts system decreased as the composition of TOA in the mixed catalyst increased. The unimodal molecular weight distribution was observed with the TOA/TIBA catalyst systems. The Al compounds-mixed catalyst could produce a higher molecular weight shoulder in the GPC curve.
Keywords
aluminium catalyst; polylactide; L-lactide; mixed catalyst;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. H. Lee, D. Kim, J. H. Kim, D. H. Lee, S. J. Shim, J. D. Nam, H. Kye, and Y. Lee, Polymer(Korea), 28, 519 (2004).
2 K. B. Aubrecht, M. A. Hillmyer, and W. B. Tolman. Macromolecules, 35, 644 (2002).   DOI   ScienceOn
3 A. C. Albertsson and I. K. Varma, Biomacromolecules, 4, 1466 (2003).   DOI   ScienceOn
4 Z. H. Tang, X. S. Chen, Q. Z. Hang, X. C. Bian, L. X. Yang, L. H. Piao, and X. B. Jing, J. Polym. Sci. Part A: Polym. Chem., 41, 1934 (2003).   DOI   ScienceOn
5 H. R. Kricheldorf and A. Serra, Polym. Bull., 14, 497 (1985).
6 S. H. Hyon, K. Jamshidi, and Y. Ikada, Polym. Prep., 24, 6 (1983).
7 B. Eling, S. Gogolewski, and A. J. Pennings, Polymer, 23, 1587 (1982).   DOI   ScienceOn
8 J. A. P. P. Vandick, J. A. N. Smith, F. E. Kohn, and J. Feijen, J. Polym. Chem., 21, 197 (1983).   DOI
9 J. W. Leenslag, S. Gogolewski, and A. J. Pennings, J. Polym. Sci., 29, 2829 (1984).
10 Y. H. Noh and Y. S. Ko, Polymer(Korea), 36, 1 (2012).
11 R. Mehta, V. Kumar, H. Bhunia, and S. N. Upadhyay, J. Macromol. Sci. Part C: Polym. Rev., 45, 337 (2005).
12 M. Okada, Prog. Polym. Sci., 27, 87 (2002).   DOI   ScienceOn
13 Y. H. Kim and S. H. Kim, J. Korean Ind. Eng. Chem., 3, 386 (1992).
14 E. Chiellini and R. Solaro, Adv. Mater., 8, 305 (1996).   DOI
15 S. J. Jeong, G. S. Kwak, I. T. Jung, D. H. Lee, H. J. Roh, and K. B. Yoon, Polymer(Korea), 32, 56 (2008).
16 Y. Hayashi, S. Yoshioka, Y. Aso, A. L. W. Po, and T. Terao, Pharm. Res., 11, 337 (1994).   DOI   ScienceOn
17 R. E. Drumright, P. R. Gruber, and D. E. Henton, Adv. Mater., 12, 1841 (2000)   DOI   ScienceOn
18 H. Tsuji, Y. Echizen, and Y. Nishimura, Polym. Degrad. Stabil., 91, 1128 (2006).   DOI   ScienceOn
19 Y. Ikada and H. Tsuji, Macromol. Rapid. Commun., 21, 117 (2000).   DOI   ScienceOn
20 Z. Tang and V. C. Gibson, Eur. Polym. J., 43, 150 (2007).   DOI   ScienceOn
21 W. J. Kim, J. H. Kim, S. H. Kim, and Y. H. Kim, Polymer(Korea), 24, 431(2000).