Browse > Article
http://dx.doi.org/10.7317/pk.2012.36.1.053

Bulk Polymerization of L-lactide with Mixed Aluminum Organometallic Catalysts  

Noh, Yee-Hyeon (Department of Chemical Engineering, Kongju National University)
Ko, Young-Soo (Department of Chemical Engineering, Kongju National University)
Publication Information
Polymer(Korea) / v.36, no.1, 2012 , pp. 53-58 More about this Journal
Abstract
The differences between single and mixed aluminium catalyst systems in the bulk polymerization of L-lactide were studied. $Al(O-i-Pr)_3$, TMA, TOA and TIBA were employed for the mixed-catalyst systems, and TIBA was chosen as a reference catalyst. For the $Al(O-i-Pr)_3$/TIBA catalyst system, the conversion of polymerization increased as the composition of $Al(O-i-Pr)_3$ in the mixed catalyst increased. The molecular weight of the resulting PLA reached to about 13000 g/mol, and the polydispersity index of the polymer from the $Al(O-i-Pr)_3$/TIBA catalyst was slightly increased than that of single catalyst. The higher molecular weight tail or shoulder was revealed in the GPC curve. The conversion of the TOA/TIBA catalyst system decreased as the composition of TOA in the mixed catalyst increased. The molecular weight of PLA prepared with TOA/TIBA catalysts increased up to 14000 g/mol. The Al compounds-mixed catalysts could produce a higher molecular weight tail or shoulder in the GPC curve, which may result in enhancement of mechanical properties of PLA.
Keywords
polylactide; L-lactide; aluminium catalyst; mixed catalyst;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 H. Tsuji, Macromol. Biosci., 5, 569 (2005).   DOI   ScienceOn
2 K. M. Nampoothiri, N. R. Nair, and R. P. John, Bioresource Technology, 101, 8493 (2010).   DOI   ScienceOn
3 R. E. Drumright, P. R. Gruber, and D. E. Henton, Adv. Mater., 12, 23 (2000).
4 R. Auras, B. Harte, and S. Selke, Macromol. Biosci., 4, 835 (2004).   DOI   ScienceOn
5 Y. Hayashi, S. Yoshioka, Y. Aso, A. L. W. Po, and T. Terao, Pharm. Res., 11, 337 (1994).   DOI   ScienceOn
6 S. Mecking, Angew. Chem. Int. Ed., 43, 1078 (2004).   DOI   ScienceOn
7 H. Roper and H. Koch, Starch/Staerke, 42, 123 (1990).   DOI
8 N. L. Holy, Chem. Technol., 21, 26 (1991).
9 Z. Tang and V. C. Gibson, Eur. Polym. J., 43, 150 (2007).   DOI   ScienceOn
10 A. C. Albertsson and I. K. Varma, Biomacromolecules, 4, 1466 (2003).   DOI   ScienceOn
11 K. B. Aubrecht, M. A. Hillmyer, and W. B. Tolman, Macromolecules, 35, 644 (2002).   DOI   ScienceOn
12 Z. H. Tang, X. S. Chen, Q. Z. Hang, X. C. Bian, L. X. Yang, L. H. Piao, and X. B. Jing, J. Polym. Sci. Part A: Polym. Chem., 41, 1934 (2003).   DOI   ScienceOn
13 C. J. Chuck, M. G. Davidson, A. D. Jones, K. K. Gabriele, M. D. Lunn, and S. Wu, Inorg. Chem., 45, 6595 (2006).   DOI   ScienceOn
14 A. Amgoune, C. M. Thomas, and J. F. Carpentier, Macromol. Rapid Commun., 28, 693 (2007).   DOI   ScienceOn
15 M. Ajioka, K. Enomoto, K. Suzuki and A. Yamaguchi, J. Environ. Polym. Degrad., 3, 225 (1995).   DOI
16 M. Ajioka, H. Suizu, C. Higuchi and T. kashima, Polym. Degrad. Stabil., 59, 137 (1998).   DOI   ScienceOn
17 P. Degkee, P. Dubois and R. Jerome, Macromol. Chem. Phys., 198, 1985 (1997).   DOI   ScienceOn
18 K. Jamshidi, S. H. Hyon, and Y. Ikada, Polymer, 29, 2229 (1988).   DOI   ScienceOn
19 R. Mehta, V. Kumar, H. Bhunia, and S. N. Upadhyay, J. Macromol. Sci., Part C: Polym. Rev., 45, 337 (2005).
20 K. J. Zhu, X. Lin, and S. Yang, J. Appl. Polym. Sci., 39, 19 (1990).
21 X. J. Yu, E. A. Botchwey, E. M. Levine, S. R. Pollack, and C. T. Laurencin, Proc. Natl. Acad. Sci. USA, 101, 11203 (2004).   DOI   ScienceOn
22 E. Chiellini and R. Solaro, Adv. Mater., 8, 305 (1996).   DOI
23 Y. H. Kim and S.H. Kim, J. Korean Ind. Eng. Chem., 3, 386 (1992).
24 R. E. Drumright, P. R. Gruber, and D. E. Henton, Adv. Mater., 12, 1841 (2000).   DOI   ScienceOn