• Title/Summary/Keyword: 혼돈유동

Search Result 26, Processing Time 0.02 seconds

Lagrangian Chaos and Dispersion of Passive Particles on the Ripple Bed (해저 파문에서의 입자의 라그란지적 혼돈 및 확산)

  • 김현민;서용권
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.13-24
    • /
    • 1993
  • The dispersion in the oscillatory flow generated by gravitational waves above the spatially periodic repples is studied. The steady parts of equations describing the orbit of the passive particle in a two dimensional field are assumed to be simply trigonometric functions. From the view point of nonlinear dynamics, the motion of the particle is chaotic under externally time-periodic perturbations which come from the wave motion. Two cases considered here are; (i) shallow water, and (ii) deep water approximation.

  • PDF

Chaotic Vibration of a Curved Pipe Conveying Oscillatory Flow (조화진동유동을 포함한 곡선 파이프 계의 혼돈 운동 연구)

  • 박철희;홍성철;김태정
    • Journal of KSNVE
    • /
    • v.7 no.3
    • /
    • pp.489-498
    • /
    • 1997
  • In this paper, chaotic motions of a curved pipe conveying oscillatory flow are theoretically investigated. The nonliear partial differential equation of motion is derived by Newton's method. The transformed nonlinear ordinary differential equation is a type of Hill's equation, which has the external and parametric excitation with a same frequency. Bifurcation curves of chaotic motion of the piping systems are obtained by applying Melnikov's method. Numerical simulations are performed to demonstrate theoretical results and show the strange attractor of the chaotic motion.

  • PDF

Static Chaos Microfluid Mixers Using Alternating Whirls and Laminations (미소블록에 의한 교차 회전유동과 미소유로에 의한 박층유동을 이용한 정적 혼돈 미소유체 혼합기에 관한 연구)

  • Chang, Sung-Hwan;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.12
    • /
    • pp.1549-1556
    • /
    • 2004
  • We have deigned, fabricated and compared four different types of static chaos microfluid mixers, including the mixers using straight channel flow, microblock-induced alternating whirl flow, microchannel-induced lamination flow, and combined alternating whirl-lamination flow. Among them, the alternating whirl-lamination (AWL-type) mixer, composed of 3-D rotationally arranged microblocks and dividing microchannels fabricated by conventional planar lithography process, is effective to reduce the mixing length over wide flow rate ranges. We characterize the performance of the fabricated mixers, through the flow visualization technique using phenolphthalein solution. We verify that the AWL-type microfluid mixer shows the shortest fluid mixing length of 2.8mm∼5.8mm for the flow rate range of Re=0.26∼26 with the pressure drop lower than 5kPa. Compared to the previous mixers, requiring the mixing lengths of 7∼17mm, the AWL-type microfluid mixer results in the 60% reduction of the mixing lengths. Due to the reduced mixing lengths within reasonable pressure drop ranges, the present micromixers have potentials for use in the miniaturized Micro-Total-Analysis-Systems($\mu$TAS).

Chaotic Stirring of an Alternately-Driven-Cavity Flow (요동운동에 의한 Driven-Cavity 유동의 혼돈적 교반)

  • 서용권
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.537-547
    • /
    • 1995
  • Numerical study on the chaotic stirring of viscous flow in an alternately driven cavity has been performed. Even under the Stokes-flow assumption, the inherent singularity at the corners made the problem not so easily accessible. With some special treatments to the region near the corners, the biharmonic equation was solved numerically by using the fully implicit method. The velocity field was then used in obtaining the trajectories of passive particles for studying the stirring effect. The three tools developed in the field of the nonlinear dynamics and chaos, that are the Poincare sections, the unstable manifolds, and the Lyapunov exponents, were used in analysing the stirring effect. It was shown that the unstable manifolds obtained in this study well fit the experimental results given by the previous investigators. It is predicted that the best stirring can be obtained when the aspect ratio a is near 0.8 and the dimensionless period T is in the range 4.3 - 4.7.

Chaotic Vibration of a Straight Pipe Conveying Oscillatory Flow (조화진동유동을 포함한 직선파이프계의 혼돈운동 연구)

  • Pak, Chul-Hui;Hong, Sung-Chul;Jung, Wook
    • Journal of KSNVE
    • /
    • v.6 no.2
    • /
    • pp.233-244
    • /
    • 1996
  • In this paper chaotic mothions of a straight pipe conveying oscillatory flow and being subjected to external forces such as earthquake are theoretically investigated. The nonlinear partial differential equation of motion is derived by Newton's method. In this equation, the nonlinear curvature of the pipe and the thermal expansion effects are contained. The nonlinear ordinary differential equation transformed from that partial differential equation is a type of Hill's equations, which have the parametric and external exciation term. This original system is transfered to the averaged system by the averaging theory. Bifurcation curves of chaotic motion of the piping system are obtained in the general case of the frequency ratio, n by applying Melnikov's method. Numerical simulations are performed to demonstrate theorectical results and show strange attactors of the chaotic motion.

  • PDF

Thermal Instability of Natural Convection in a Glass Melting Furnace (유리 용융로에서 자연대류의 열적 불안정성)

  • Lim, Kwang-Ok;Lee, Kwan-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.12
    • /
    • pp.1774-1783
    • /
    • 1998
  • The transition from steady laminar to chaotic convection in a glass melting furnace specified by upper surface temperature distribution has been studied by the direct numerical analysis of the two and three-dimensional time dependent Navier-Stokes equations. The thermal instability of convection roll may take place when modified Rayleigh number($Ra_m$) is larger than $9.71{\times}10^4$. It is shown that the basic flows in a glass melting furnace are steady laminar, unsteady periodic, quasi-periodic or chaotic flow. The dimensionless time scale of unsteady period is about the viscous diffusion time, ${\tau}_d=H^2/{\nu}_0$. Through primary and secondary instability analyses the fundamental unsteady feature in a glass melting furnace is well defined as the unsteady periodic or weak chaotic flow.

QUASI-PERIODICITY AND CHAOTIC CONVECTION IN A HORIZONTAL ANNULUS WITH A CONSTANT HEAT FLUX WALL (일정 열 유속 벽을 갖는 수평 환형 공간에서의 준주기성과 혼돈대류)

  • Yoo, Joo-Sik
    • Journal of computational fluids engineering
    • /
    • v.16 no.3
    • /
    • pp.52-58
    • /
    • 2011
  • This study investigates the bifurcation sequence to chaos in a horizontal annulus with a constant heat flux wall. After the first Hopf bifurcation from a steady to a simple time-periodic flow with a fundamental frequency, quasi-periodic flows with two or three incommensurable frequencies appear. A reverse transition from a quasi-periodic flow to a simple periodic flow is observed with increase of Rayleigh number. And finally, chaotic convection is established after appearance of three incommensurable frequencies at a high Rayleigh number. Simple periodic flows exist between quasi periodic flows. The transition route to chaos of the present simulations follows the Ruelle-Takens route.

Chaotic Thermal Convection of a Intermediate Prandtl-Number Fluid in a Horizontal Annulus: Pr=0.2 (수평 환형 공간에서의 중간 Prandtl 수 유체의 혼돈 열대류: Pr=0.2)

  • Yu, Ju-Sik;Kim, Yong-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.3
    • /
    • pp.433-441
    • /
    • 2001
  • Natural convection of a fluid with intermediate Prand시 number of Pr=0.2 in a horizontal annulus is considered, and the bifurcation phenomena and chaotic flows are numerically investigated. The unsteady two-dimensional streamfunction-vorticity equation is solved with finite difference method. The steady downward flow with two counter-rotating eddies bifurcates to a simple periodic flow with a fundamental frequency. And afterwards, second Hopf bifurcation occurs, and a quasi-periodic flow with two incommensurable frequencies appears. However, a new time-periodic flow is established after experiencing quasi-periodic states. As Rayleigh number is increased further, the chaotic flow regime is reached after a sequence of successive Hopf bifurcation to quasi-periodic and chaotic flow regimes. A scenario similar to the Ruelle-Takens-Newhouse scenario of the onset of chaos is observed.

유압밸브의 내의 유동력과 대책(I)

  • 이정오
    • Journal of the KSME
    • /
    • v.17 no.1
    • /
    • pp.28-31
    • /
    • 1977
  • 유압밸브의 스푸울(spool)에 작용하는 유동력을 정확하게 기술하는 것은 일반적으로 매우어렵고, 실험에 의존하는 경우가 많다. 수푸울의 형상이 비교적 간단한 경우에 대해서는, 적절한 가정하에 서 유동력의 크기를 계산할 수 있고, 그 결과를 설계에 이용할 수 있다. 많은 유압교과서에서 유 동력의 기술을 다루고 있으나 기술방법에 있어서 명확성이 결여된 느낌을 주는 경우가 많고, 가 끔 학생들이나 현장의 기술자들이 유동력의 개년메 대해서 혼돈하는 수가 있다. 이 글의 내용은 본인의 유압공학 강의에서 발춰, 정리한 것이고, 유압백브에 작용하는 유동력의 명확한 이해를 주 기 위해서 쓴 것이므로 앞으로 이 분야에 종사하는 사람들에게 참고가 되기를 희망한다. 여기서 다루는 문제는 유압밸브의 스푸울에 작용하는 반경방향의 유동력(Iateral forces)과 축방향의 힘 (axial forces), 포펫트형(popet type) 밸브에 미치는 유동력, 후렛퍼형(flapper) 밸브에 작용하는 힘 등이고 기하학적 형태가 간단한 경우에 대해서 논의한다.

  • PDF

Time-dependent natural convection in a glass melting furnace (유리용융로의 시간종속 자연대류)

  • Im, Gwang-Ok;Lee, Gwan-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.7
    • /
    • pp.919-927
    • /
    • 1997
  • The main purpose of this study is to determine bifurcation as the primary instability of a glass melting furnace. Steady-state and unsteady characteristics of natural convection in the partially open cavity as appeared in a glass melting furnace is investigated by using numerical analysis. Three types of convection, such as steady laminar, unsteady periodic or unsteady quasi-periodic convection may occur according to the temperature difference between upper two isothermal surfaces along the depth of cavity in a glass melting furnace. In the temperature difference of 150-900 K between batch and free surface, the larger the temperature difference, the weaker the convection strength and unsteadiness. Since the glass viscosity is increasing exponentially in the lower temperature, the batch freezes the thermofluidic field especially below the surface of it. If the depth of cavity is 0.5 m, the bifurcation to time-dependent natural convection may occur in the range of 60-650 K. If that is 1.0 m, it may occur in the whole range of temperature difference.