• 제목/요약/키워드: 호르몬 수용체

검색결과 123건 처리시간 0.03초

Effects of Chungkookjang Extract on Growth Hormone Secretion from GH3 Mouse Pituitary Cell and Growth Hormone Receptor Signaling Pathway (GH3 뇌하수체 세포주로부터 성장호르몬의 분비와 성장호르몬 수용체 신호전달에 미치는 청국장 추출물의 효능)

  • Choi, Sun-Il;Kim, Ji-Eun;Hwang, In-Sik;Lee, Hye-Ryun;Lee, Young-Ju;Son, Hong-Joo;Kim, Dong-Seob;Park, Kyu-Min;Hwang, Dae-Youn
    • Journal of Life Science
    • /
    • 제22권9호
    • /
    • pp.1243-1253
    • /
    • 2012
  • The production and secretion of growth hormone (GH) in the anterior pituitary gland can be induced by several natural products to control cell proliferation, differentiation, and migration. To investigate whether Chungkookjang (CKJ) produced by the fermentation process affects GH-related metabolism, the secretion and the response of GH were observed in pituitary cells and GH target cells. Among six CKJs manufactured by different strains of glycine max, only three CKJs, including Daewon (DW), Daepung (DP), and Taegwang (TG), induced GH secretion from GH3 cells at 5.0 mg/ml concentration. There were no significant changes detected in the viability of any of the cells treated with these CKJs. In addition, the increase in GH secretion from the GH3 cells was dependent on the concentration of the three types of CKJs. The proliferation of cell lines, including MG63 and HepG2 cells, that originated from those derived from the GH target organs was significantly activated by treatment with the GH-containing conditional medium (GCM) harvested from the three CKJ-treated GH3 cells, although their induction rate was different from each other. In these cells, p-STAT5 was maximally translocated into the nucleus of MG63 cells 30 min after DW treatment, while it was translocated in HepG2 cells at 60 min. These results suggest that these three types of CKJ could enhance the secretion of GH, as well as the GCM-derived response, in the two target organs.

Estrogen Function in Male Rodents Fertility (설치류 수컷 생식력에 미치는 에스트로겐의 효과)

  • Kim, Ji-Hyang;Kim, Jin-Kyu;Yoon, Yong-Dal
    • Development and Reproduction
    • /
    • 제9권2호
    • /
    • pp.85-93
    • /
    • 2005
  • Estrogens are known as the steroid hormones and essential regulators of developments, differentiations, and fertility in animals including humans. Recently, classic focus on estrogens which are considered as female hormone is changing in the whole field of reproductive endocrinology. Especially, interest in estrogen functions in male reproduction is increasing more and more, as numerous studies about the endocrine disruptors, interrupting the endocrine system, are being carried out. To understand exactly the function of estrogen in a male reproductive system, a summary for estrogen receptors upon developmental distributions in testis will be useful. In addition to the regulatory roles of estrogen in male, unexpected exposure to exogenous estrogens causes defects of differentiation of male reproductive system and an injury of spermatogenesis. Also, this review highlights the indicator of exogenous estrogens to perturb male fertility. These approaches would give tile practical information about estrogen roles in male development and reproduction.

  • PDF

Applying the basic knowledge about regulation of pigmentation towards development of strategies for cutaneous hypopigmentation

  • Abdel-Malek, Zalfa A.
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • 제28권3호
    • /
    • pp.7-39
    • /
    • 2002
  • The extensive variation in human cutaneous pigmentation is mainly due to differences in the rate of melanin synthesis by epidermal melanocytes, the relative amounts of eumelanin and pheomelanin synthesized, and the manner and rate of transfer of melanosomes from melanocytes to keratinocytes. Pigmentation is a complex trait that is regulated genetically and environmentally. One gene that has been receiving a lot of attention is the gene for the melanocortin 1 receptor The extensive polymorphism of this gene in human populations suggests its significance in the diversity of pigmentation. Exposure to solar ultraviolet radiation (UV) results in increased synthesis of a variety of growth factors, cytokines and hormones, and in modulation of their receptors in the epidermis. Knowledge about the regulation of pigmentation has led to strategies for clinical treatment of hyperpigmented skin lesions. Three main strategies are: 1) the use of chemicals that interfere with the melanin synthetic pathway, 2) the design of peptides or peptide-mimetics based on the structure of hormones that regulate eumelanin synthesis, and 3) the use of agents that reduce melanosome transfer from melanocytes to keratinocytes. All three strategies are expected to induce hypopigmentation, by inhibiting total melanin synthesis, eumelanin production, or the epidermal melanin unit, respectively.

In vitro Analysis of Glucocorticoid-induced Reporter Gene Expression Using Lentivirus System (Lentivirus System을 이용한 Glucocorticoid 유도 Reporter 유전자 발현의 분석)

  • Lee, Mi-Sook;Kim, Ji-Yeon;Her, Song
    • Journal of Marine Bioscience and Biotechnology
    • /
    • 제2권2호
    • /
    • pp.81-85
    • /
    • 2007
  • Glucocorticoid hormone regulates numerous physiological processes, such as regulation of metabolism, and anti-inflammatory and immunosuppressive actions via the activation and repression of gene expression. Here we described a lentivirus-based reporter vector system expressing red fluorescent protein (mRFP) or firefly luciferase (Luc) under the control of a glucocorticoid-responsive element that allows observation of the temporospatial pattern of glucocorticoid induced GR-mediated signaling on a cellular level. Moreover, usage of the chromatin insulator of the chicken ${\beta}$-globin locus induced a marked increase of sensitivity of glucocorticoid inducible promoter of a reporter gene. Use of this method will be applicable of screening for agonist and antagonist of GR in vitro, and also a reporter gene assay for the in vivo determination of the GR-mediated gene activation.

  • PDF

Gene Expression Pattern during Early Embryogenesis and Transcriptional Activities of Estrogen Receptor-Related Receptor(ERR) in Sea Urchin, Strongylocentrotus nudus (둥근성게(Strongylocentrotus nudus) Estrogen Receptor-Related Receptor(ERR)의 초기 발생시 유전자 발현 패턴과 전사 활성)

  • Maeng, Se-Jung;Kim, Mi-Soon;Sohn, Young-Chang
    • Development and Reproduction
    • /
    • 제13권4호
    • /
    • pp.249-256
    • /
    • 2009
  • The estrogen receptor-related receptors (ERRs) are a group of nuclear receptor superfamily of transcription factors. ERRs and estrogen receptors (ERs) have overlapping affinities for coactivators and DNA binding sites, but differ markedly in ligand binding and activation. The three mammalian ERR genes have been implicated in diverse physiological processes ranging from placental development to maintenance of bone density, whereas the molecular diversity, function, and regulation of ERRs in non-mammalian species are not well understood. In the present study, to investigate the involvement of ERR in transcription and embryogenesis in marine invertebrates, a cDNA encoding ERR (SnERR) was cloned from the gonad in Strongylocentrotus nudus, by polymerase chain reaction (PCR). The amino acid sequence of SnERR showed high homology with that of S. purpuratus (91%). A phylogenetic tree clearly showed that SnERR is a member of the ERR family and clustered in echinodermata group as supported by a high bootstrap value. We examined gene expression of SnERR during embryonic development of S. nudus using real-time PCR. During the embryonic development, the mRNA of ERR was significantly high levels in early development stages (4~64 cell) and larval stages. The SnERR slightly activated transcription through the classical estrogen response elements (EREs) in the presence of genistein. In addition, peroxisome proliferator-activated receptor $\gamma$ coactivator (PGC)-$1\alpha$ knwon as a coactivator of ERR enhanced the snERR-mediated transactivation, suggesting that the PGC-$1\alpha$ is a coactivator of SnERR.

  • PDF

Utilization of Hypothalamic Hormones for Maturational Induction in Seawater Chum Salmon, Oncorhynchus keta (해면연어의 성숙을 유도하기 위한 시상하부호르몬의 이용)

  • Park, Woo-Dong;Lee, Cheul-Ho;Shon, Young-Chang
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • 제12권2호
    • /
    • pp.121-124
    • /
    • 2007
  • Freshwater-adapted maturing chum salmon (Oncorhynchus keta) involuntarily captured by stationary nets in Yang-yang seashore areas were transferred to freshwater in an outdoor raceway tank at Yeongdong Inland Fisheries Research Institute, NFRDI, Yang-yang, Gangwon, Korea and kept over 1 day until the start of the experiments. The freshwater-adapted females were single-injected intraperitoneally with gonadotropin-releasing hormone analogue, (GnRH-a: $70\;{\mu}g/kg$ body weight, BW) alone or combined with a dopamine receptor antagonist, pimozide($700\;{\mu}g/kg$ BW). Although gonadosomatic indices [GSI, (gonad weight/BW)${\times}100$] did not show significant changes in both 2004 and 2005, GSI of GnRH-a-injected fish during the 2005 trial slightly increased on the 5th and 7th days post-injection compared to those of vehicle treated fish. Hepatosomatic indices [HSI, (liver weight/BW)${\times}100$] of fish injected with GnRH-a alone and combined with pimozide decreased significantly on the 7th day post-injection in 2004(P<0.05). In 2005 trials, HSI was significantly reduced in GnRH-a treated fish on the 7th day post-injection (P<0.05). Pimozide-injected fish showed a pattern with increase of GSI and decrease of HSI, without significant differences. Taken together, these results suggest that at least in part hypothalamic hormones and dopamine receptor antagonist may induce sexual maturation in freshwater-adapted maturing chum salmon. It remains to evaluate these preliminary results by further researches.

Gene Expression Levels of Growth Hormone, Prolactin and Their Receptors of Olive Flounder Paralichthys olivaceus by Salinity Changes (염분농도에 따른 넙치 (Paralichthys olivaceus)의 성장호르몬, 프로락틴 및 수용체 유전자의 발현변화)

  • Cho, Young-Min;Shin, Ji-Hye;Sohn, Young-Chang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • 제39권4호
    • /
    • pp.326-332
    • /
    • 2006
  • To investigate the effects of environmental salinity on the expression of the genes for growth hormone (GH) and prolactin (PRL) in the pituitary, and their receptors (GHR, PRLR) In the kidney, intestine, and gills in teleosts, we acclimated juvenile olive flounders (Paralichthys olivaceus) to different salinities (5, 15, 25, or 32 psu) for 3 days and examined their mRNA levels using the reverse transcription-polymerase chain reaction (RT-PCR). In the fish adapted to low salinity, the PRL mRNA levels in the pituitary were elevated dramatically, whereas the GH mRNA levels did not differ significantly. PRLR mRNA increased significantly in fish exposed to low salinity, whereas GHR mRNA levels did not differ. These results suggest that PRL is an important hormone for flounders that are acclimated to brackish water and it may control ion homeostasis with PRLR in the osmoregulatory organs.

Biology of melanocytes and melanogenesis (멜라닌세포의 특성과 멜라닌 형성)

  • 박경찬
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • 제25권2호
    • /
    • pp.45-57
    • /
    • 1999
  • Melanocytes, derived from neural crest, make melanin and protect skin from the hazardous ultraviolet light. Melanocytes with dendritic process has similar morphology with neurogenic cells and share growth factor receptors such as neurotrophin receptors. Melanogenesis can be regulated by ultraviolet light and inflammation of the skin. In addition, several factors such as hormone, cytokines, arachidonic acid can affect the proliferation and melanogenesis of melanocytes. For melanogenesis, melanocytes need expression of various genes including tyrosinase, TRP-1, TRP-2. In addition, melanin need to be transferred from melanocytes to surrounding keratinocytes. The biology of melanocytes is complex and mechanism of melanocytes proliferation and melanogenesis is still under the investigation.

  • PDF

Roles of the Insulin-like Growth Factor System in the Reproductive Function;Uterine Connection (Insulin-like Growth Factor Systems의 생식기능에서의 역할;자궁편)

  • Lee, Chul-Young
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제23권3호
    • /
    • pp.247-268
    • /
    • 1996
  • It has been known for a long time that gonadotropins and steroid hormones play a pivotal role in a series of reproductive biological phenomena including the maturation of ovarian follicles and oocytes, ovulation and implantation, maintenance of pregnancy and fetal growth & development, parturition and mammary development and lactation. Recent investigations, however, have elucidated that in addition to these classic hormones, multiple growth factors also are involved in these phenomena. Most growth factors in reproductive organs mediate the actions of gonadotropins and steroid hormones or synergize with them in an autocrine/paracrine manner. The insulin-like growth factor(IGF) system, which is one of the most actively investigated areas lately in the reproductive organs, has been found to have important roles in a wide gamut of reproductive phenomena. In the present communication, published literature pertaining to the intrauterine IGF system will be reviewed preceded by general information of the IGF system. The IGF family comprises of IGF-I & IGF-II ligands, two types of IGF receptors and six classes of IGF-binding proteins(IGFBPs) that are known to date. IGF-I and IGF-II peptides, which are structurally homologous to proinsulin, possess the insulin-like activity including the stimulatory effect of glucose and amino acid transport. Besides, IGFs as mitogens stimulate cell division, and also play a role in cellular differentiation and functions in a variety of cell lines. IGFs are expressed mainly in the liver and messenchymal cells, and act on almost all types of tissues in an autocrine/paracrine as well as endocrine mode. There are two types of IGF receptors. Type I IGF receptors, which are tyrosine kinase receptors having high-affinity for IGF-I and IGF-II, mediate almost all the IGF actions that are described above. Type II IGF receptors or IGF-II/mannose-6-phosphate receptors have two distinct binding sites; the IGF-II binding site exhibits a high affinity only for IGF-II. The principal role of the type II IGF receptor is to destroy IGF-II by targeting the ligand to the lysosome. IGFs in biological fluids are mostly bound to IGFBP. IGFBPs, in general, are IGF storage/carrier proteins or modulators of IGF actions; however, as for distinct roles for individual IGFBPs, only limited information is available. IGFBPs inhibit IGF actions under most in vitro situations, seemingly because affinities of IGFBPs for IGFs are greater than those of IGF receptors. How IGF is released from IGFBP to reach IGF receptors is not known; however, various IGFBP protease activities that are present in blood and interstitial fluids are believed to play an important role in the process of IGF release from the IGFBP. According to latest reports, there is evidence that under certain in vitro circumstances, IGFBP-1, -3, -5 have their own biological activities independent of the IGF. This may add another dimension of complexity of the already complicated IGF system. Messenger ribonucleic acids and proteins of the IGF family members are expressed in the uterine tissue and conceptus of the primates, rodents and farm animals to play important roles in growth and development of the uterus and fetus. Expression of the uterine IGF system is regulated by gonadal hormones and local regulatory substances with temporal and spatial specificities. Locally expressed IGFs and IGFBPs act on the uterine tissue in an autocrine/paracrine manner, or are secreted into the uterine lumen to participate in conceptus growth and development. Conceptus also expresses the IGF system beginning from the peri-implantation period. When an IGF family member is expressed in the conceptus, however, is determined by the presence or absence of maternally inherited mRNAs, genetic programming of the conceptus itself and an interaction with the maternal tissue. The site of IGF action also follows temporal (physiological status) and spatial specificities. These facts that expression of the IGF system is temporally and spatially regulated support indirectly a hypothesis that IGFs play a role in conceptus growth and development. Uterine and conceptus-derived IGFs stimulate cell division and differentiation, glucose and amino acid transport, general protein synthesis and the biosynthesis of mammotropic hormones including placental lactogen and prolactin, and also play a role in steroidogenesis. The suggested role for IGFs in conceptus growth and development has been proven by the result of IGF-I, IGF-II or IGF receptor gene disruption(targeting) of murine embryos by the homologous recombination technique. Mice carrying a null mutation for IGF-I and/or IGF-II or type I IGF receptor undergo delayed prenatal and postnatal growth and development with 30-60% normal weights at birth. Moreover, mice lacking the type I IGF receptor or IGF-I plus IGF-II die soon after birth. Intrauterine IGFBPs generally are believed to sequester IGF ligands within the uterus or to play a role of negative regulators of IGF actions by inhibiting IGF binding to cognate receptors. However, when it is taken into account that IGFBP-1 is expressed and secreted in primate uteri in amounts assessedly far exceeding those of local IGFs and that IGFBP-1 is one of the major secretory proteins of the primate decidua, the possibility that this IGFBP may have its own biological activity independent of IGF cannot be excluded. Evidently, elucidating the exact role of each IGFBP is an essential step into understanding the whole IGF system. As such, further research in this area is awaited with a lot of anticipation and attention.

  • PDF

Ghrelin Attenuates Dexamethasone-induced T-cell Apoptosis by Suppression of the Glucocorticoid Receptor (덱사메타손에 의해 유발된 흉선 T세포사멸에 대한 그렐린의 세포사멸억제효과)

  • Lee, Jun Ho
    • Journal of Life Science
    • /
    • 제24권12호
    • /
    • pp.1356-1363
    • /
    • 2014
  • Ghrelin is a 28 amino acid orexigenic peptide hormone that is secreted predominantly by tX/A cells in the stomach, and it plays a major role in energy homeostasis. Activated ghrelin has an n-octanoyl group covalently linked to the hydroxyl group of the Ser3 residue, which is critical for its binding to the G-protein coupled growth hormone secretagogue receptor-1a (GHS-R1a). According to recent reports, both ghrelin and its receptor, GHS-R1a, are expressed by a variety of immune cells, including T- and B-lymphocytes, monocytes, and dendritic cells, and ghrelin stimulation of leukocytes provides a potent immunomodulatory signal controlling systemic and age-associated inflammation and thymic involution. Here, we report that ghrelin protected murine thymocytes from dexamethasone (DEX)-induced cell death both in vivo and in vitro. Subsequently, we explored the molecular mechanisms of the antiapoptotic effect of ghrelin. According to our experiments, ghrelin inhibited the expression of proapoptotic proteins via the regulation of glucocorticoid receptor (GR) phosphorylation. As a result, ghrelin inhibited the proapoptotic activation of proteins, such as Caspase-3, PARP, and Bim. These data suggest that ghrelin, through GHS-R, inhibits the pathway to apoptosis by regulation of the proapoptotic protein activation signal pathway. They provide evidence that blocking apoptosis is an essential function of ghrelin during the development of thymocytes.