Browse > Article
http://dx.doi.org/10.5657/kfas.2006.39.4.326

Gene Expression Levels of Growth Hormone, Prolactin and Their Receptors of Olive Flounder Paralichthys olivaceus by Salinity Changes  

Cho, Young-Min (Faculty of Bioscience and Technology and Department of Marine Applied Biotechnology, Kangnung National University)
Shin, Ji-Hye (Faculty of Bioscience and Technology and Department of Marine Applied Biotechnology, Kangnung National University)
Sohn, Young-Chang (Faculty of Bioscience and Technology and Department of Marine Applied Biotechnology, Kangnung National University)
Publication Information
Korean Journal of Fisheries and Aquatic Sciences / v.39, no.4, 2006 , pp. 326-332 More about this Journal
Abstract
To investigate the effects of environmental salinity on the expression of the genes for growth hormone (GH) and prolactin (PRL) in the pituitary, and their receptors (GHR, PRLR) In the kidney, intestine, and gills in teleosts, we acclimated juvenile olive flounders (Paralichthys olivaceus) to different salinities (5, 15, 25, or 32 psu) for 3 days and examined their mRNA levels using the reverse transcription-polymerase chain reaction (RT-PCR). In the fish adapted to low salinity, the PRL mRNA levels in the pituitary were elevated dramatically, whereas the GH mRNA levels did not differ significantly. PRLR mRNA increased significantly in fish exposed to low salinity, whereas GHR mRNA levels did not differ. These results suggest that PRL is an important hormone for flounders that are acclimated to brackish water and it may control ion homeostasis with PRLR in the osmoregulatory organs.
Keywords
Olive flounder; Prolactin; Growth hormone; Osmoregulation; RT-PCR; mRNA;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Morgan, J.D. and G.K. Iwama. 1991. Effects of salinity on growth, metabolism, and ion regulation in juvenile rainbow trout and steelhead trout (Oncorhynchus mykiss) and fall chinook salmon (Oncorhychus kisutch). Can. J. Fish. Aquat. Sci., 48, 2083-2094   DOI
2 Madsen, S.S. and H.A. Bern. 1992. Antagonism of prolactin and growth hormone: impact on seawater adaptation in two salmonids, Salmo trutta and Oncorhynchus. Zool. Sci., 9, 775-784
3 Manzon, L.A. 2002. The prolactin in fish osmoregulation: a review. Gen. Comp. Endocrinol., 125, 291-310   DOI   ScienceOn
4 McCormick, S.D. 2001. Endocrine control of osmoregulation in teleost fish. Am. Zool., 41, 781-794   DOI   ScienceOn
5 Nakao, N., Y. Higashimoto, T. Ohkubo, H. Yoshizato, N. Nakai, K. Nakashima and M. Tanaka. 2004. Characterization of structure and expression of the growth hormone receptor gene of the Japanese flounder (Paralichtys olivaceus). J. Endocrinol., 182, 157-164   DOI   ScienceOn
6 Power, D.M. 2005. Developmental ontogeny of prolactin and its receptor in fish. Gen. Comp. Endocrinol., 142, 25-33   DOI   ScienceOn
7 Seale, A.P., L.G. Riley, T.A. Leedom, S. Kajimura, R.M. Dores, T. Hirano and E.G. Grau. 2002. Effects of environmental osmolality on release of prolactin, growth hormone and ACTH from the tilapia pituitary. Gen. Comp. Endocrinol., 128, 91-101   DOI   ScienceOn
8 Yada, T., T. Hirano and E.G. Grau. 1994. Changes in plasma levels of the two prolactins and growth hormone during adaptation to differentsalinities in the euryhaline tilapia, Oreochromis mossambicus. Gen. Comp. Endocrinol., 93, 214-223   DOI   ScienceOn
9 Chang, Y.J., B.H. Min, H.J. Chang and J.W Hur. 2002. Comparison of blood physiology in juvenile black seabream (Acanthopagrus schlegeli) reared in converted freshwater from seawater and seawater from freshwater. J. Kor. Fish. Soc., 35, 595-600   과학기술학회마을   DOI
10 Ayson, F.G., T. Kaneko, M. Tagawa, S. Hasegawa, E.G. Grau, R.S. Nishioka, S.K. David, H.A. Bern and T. Hirano. 1993. Effects of acclimation to hypertonic environment on plasma and pituitary levels of two prolactins and growth hormone in two species of tilapia, Oreochromis mossambicus and Oreochromis niloticus. Gen. Comp. Endocrinol., 89, 138-148   DOI   ScienceOn
11 Helms, L.M.H., E.G. Grau and R.J. Borski. 1991. Effects of osmotic pressure and somatostatin on the cAMP messenger system of the osmosensitive prolactin cell of a teleost fish, the tilapia (Oreochromis mossambicus). Gen .. Comp. Endocrinol., 83, 111-117   DOI   ScienceOn
12 Higashimoto, Y., N. Nakao, T. Ohkubo, M. Tanaka and K. Nakashima. 2001. Structure and tissue distribution of prolactin receptor mRNA in Japanese flounder (Paralichtys olivaceus): conserved and preferential expression in osmoregulatory organs. Gen. Comp. Endocrinol., 123, 170-179   DOI   ScienceOn
13 Hirano, T. 1986. The spectrum of prolactin action in teleosts. Gen. Comp. Endocrinol., 112, 53-74
14 Kawanchi, H. and S.A. Sower. 2006. The dawn and evolution of hormones in the adenohypophysis. Gen. Comp. Enodcrinol., 148, 3-14   DOI   ScienceOn
15 Kelly, S.P., I.K. Chow and N.S. Woo. 1999. Effects of prolactin and growth hormone on strategies of hypo osmotic adaptation in a marine teleost, Sparus sarba. Gen. Comp. Endocrinol., 113, 9-22   DOI   ScienceOn
16 Lee, K.M., T. Kaneko and K. Aida. 2006. Prolactin and prolactin receptor expressions in a marine teleost, pufferfish Takifugu rubripes. Gen. Comp. Endocrinol., 143. 318-28
17 Sampaio, L.A. and A. Bianchini. 2002. Salinity effects on osmoregulation and growth of the euryhaline flounder Paralichtys orbignyanus. J. Exp. Mar. Biol. Ecol., 269, 187-196   DOI   ScienceOn
18 Mancera, J.M., R.L. Carrion and M.D.M. Riodel. 2002. Osmoregulatory action of PRL, GH, and cortisol in the gilthead seabream (Sparus aurata L.). Gen. Comp. Endocrinol. 129, 95-103   DOI   ScienceOn
19 Auperin, B., F. Rentier-Delrue, J.A. Martial and P. Prunet. 1994. Evidence that two tilapia (Oreochromis niloticus) prolactins have different osmoregulatory functions during adaptation to a hyperosmotic environment. J. Mol. Endocrinol., 12, 13-24   DOI   ScienceOn