• Title/Summary/Keyword: 형상 공간

Search Result 1,049, Processing Time 0.033 seconds

A Study on the Stability Analysis of Underground Mine using LIDAR (LIDAR를 활용한 지하광산의 안정성 분석에 관한 연구)

  • Lee, Seung-Joong;Kim, Byung-Ryeol;Jin, Yeon-Ho;Choi, Sung-Oong
    • Tunnel and Underground Space
    • /
    • v.27 no.6
    • /
    • pp.406-421
    • /
    • 2017
  • This study describes a precise numerical analysis process by adopting the real image of mine openings obtained by LIDAR, which can produce a point cloud data by measuring the target surface numerically. Research area is a section of underground limestone mine which is used hybrid room-and-pillar method for improving the production rate. From the application of LIDAR to this section several results were deduced, that is, the central axis of upper and lower vertical safety pillars is distorted to the direction of NW and the section area of lower vertical safety pillar is $34m^2$ smaller than the designed area of $100m^2$. The results of precise measurement in geometrical shape of mine openings and precise simulation in numerical analysis confirms that LIDAR techniques can be suggested as a valuable tool for stability analysis in underground mine by configuring the mine opening shape.

Topology Optimization based on Monte Carlo Analysis (몬테카를로 해석 기반 확률적 위상최적화)

  • Kim, Dae Young;Noh, Hyuk Chun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.2
    • /
    • pp.153-158
    • /
    • 2017
  • In this paper, we take into account topology optimization problems considering spatial randomness in the material property of elastic modulus. Based on 88 lines MATLAB Code, Monte Carlo analysis has been performed for MBB(messerschmidt-$b{\ddot{o}}lkow$-blohm) model using 5,000 random sample fields which are generated by using the spectral representation scheme. The random elastic modulus is assumed to be Gaussian in the spatial domain of the structure. The variability of the volume fraction of the material, which affects the optimum topology of the given problem, is given in terms of correlation distance of the random material. When the correlation distance is small, the randomness in the topology is high and vice versa. As the correlation distance increases, the variability of the volume fraction of the material decreases, which comply with the feature of the linear static analysis. As a consequence, it is suggested that the randomness in the material property is need to be considered in the topology optimization.

STUDIES ON THE CHARACTERISTICS OF STONE STRUCTURES BY GEOTECHNICAL AND DYNAMIC STRUCTURAL ENGINEERINGS (석조구조물의 효율적 유지관리를 위한 지질공학적 및 구조동역학적 특성연구)

  • HoWoongShon;SungMinLee
    • Journal of the Korean Geophysical Society
    • /
    • v.6 no.4
    • /
    • pp.277-294
    • /
    • 2003
  • Structures show the phenomena of deformation and lowering of function with time-lapse by artificial environments and changes of geotechnical conditions or accumulation of initial deformation elements. This study aims the structural assessment of cultural property, Chum-Sung-Dae, located in Kyeongjucity, Korea. It was built about 1,300 years ago, and has undergone deformation and ground-subsidence with time-lapse. Non-destructive evaluation techniques were applied to the Chum-Sung-Dae, to protect it from survey. Because of this reason, 3D precise laser scanning surveying system was applied to measure the exact size of Chum-Sung-Dae, displacement and declining angles. Geophysical exploration also was applied to study the subsurface distribution of geotechnical parameters or physical properties. Natural frequencies were measured from real and model of Chum-Sung-Dae to study the dynamic characteristics of vibration and/or earthquake load and stiffness of structures.

  • PDF

Molding and Optical Evaluation of Aspheric Glass Lenses for Camera Phone Module (카메라폰 모듈용 비구면 Glass렌즈의 성형 및 광학특성 평가)

  • Kim, Hye-Jeong;Cha, Du-Hwan;Kim, Jeong-Ho
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.12 no.3
    • /
    • pp.124-131
    • /
    • 2007
  • Aspheric glass lenses was fabricated by glass molding press(GMP), which is a plano-aspheric convox shape and intended for use as an optical design of 3 megapixel and 2.5 magnifications zoom in a camera phone module. Transcription ratio of form accuracy (PV) as well as resolution properties was measured for evaluation the molded lens. Form accuracy (PV) of the mold surface was $0.127\;{\mu}m$ in an aspheric and $0.168\;{\mu}m$ in a plano, in case of the molded lens it shows $0.205\;{\mu}m$ and $0.223\;{\mu}m$, respectively. Resolution of the molded lens was measured as a MTF[Contrast]. The molded lens shows contrast of 32.9% at 80 1p/mm and the value is similar with contrast of 33% obtained simulation.

  • PDF

Effect of Joint Persistence on the Formation of Tetrahedral Block Inside an Underground Opening (절리 영속성이 사각 단면 지하공동에서의 사면체 블록 형성에 끼치는 영향)

  • Cho, Taechin
    • Tunnel and Underground Space
    • /
    • v.26 no.6
    • /
    • pp.475-483
    • /
    • 2016
  • A numerical analysis model capable of predicting the shape, the size and the potentiality of collapse of tetrahedral blocks considering the persistence obtained from the field survey of joint distribution around the underground excavation surface has been developed. Numerical functions of analyzing both the exposed trace distribution on the excavation surface and the formation of tetrahedral block controlled by the extent of joint surface have been established and linked to the previously developed three dimensional deterministic block analysis model. To illustrate the reliability of advanced numerical model the case of underground excavation in which the collapse of rock block had practically taken place was studied. Representative orientations of joint sets was determined based on the joint distribution pattern observed on the excavation surfaces. The formation of block on the roof of underground opening was analyzed to unveil the potential tetrahedral block the shape of which was very similar to the collapsed rock block. Mechanisms of collapse process has been also analyzed by considering the three dimensional shape of tetrahedral block.

A Study for the Stability Investigation of Three Parallel Tunnels Using Scaled Model Tests (삼병렬 터널의 안정성 검토를 위한 모형실험 연구)

  • Kim, Jong-Woo;Bae, Woo-Seok
    • Tunnel and Underground Space
    • /
    • v.18 no.4
    • /
    • pp.300-311
    • /
    • 2008
  • In this study, scaled model tests were performed to investigate the stability of three parallel tunnels. Seven types of test models which had respectively different pillar widths, tunnel sectional shapes, support conditions and ground conditions were experimented, where crack initiating pressures and deformation behaviors around tunnels were investigated. In order to evaluate the effect of pillar widths on stability, various models were experimented. As results, the models with shallower pillar widths proved to be unstable because of lower crack initiating pressures and more tunnel convergences than the models with thicker pillar widths. In order to find the effect of tunnel sectional shape on stability, the models with arched, semi-arched and rectangular tunnels were experimented. Among them rectangular tunnel model was the most unstable, where the arched tunnel model with small radius of roof curvature was more stable than semi-arched one. The model with rockbolt showed higher crack initiating pressure and less roof lowering than the unsupported model. The deformation behaviors of tunnels in the anisotropic ground model were quite different from those in the isotropic ground model. Futhermore, the results of FLAC analysis were qualitatively coincident with the experimental results.

A Numerical Analysis of Free Surface Wave around a ship (선체주위 자유수면파의 수치해석)

  • Choon-Bum Hong;Seung-Hee Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.3
    • /
    • pp.80-86
    • /
    • 1994
  • A numerical method for simulations of inviscid incompressible flow fields around a ship advancing on the free surface is developed. A body fitted coordinate system, generated by numerically solving elliptic type partial differential equations is used to conform the ship and free surface configurations. Three dimensional Euler equations transformed to the non-staggered body fitted coordinate system are discretised by finite difference method. Time and spatial derivatives are discretised by forward and centered differencings, respectively, and artificial dissipations are added to discretised convection terms for improvements of numerical stability. At each time steps, free surface elevations are recomputed to satisfy nonlinear free surface conditions. Poisson equations for pressure field are solved iteratively and the velocity field for next time step is extrapolated. To verify the developed numerical method, flow fields around a Wigley model are simulated(Fn=0.250-0.408) and compared with experimental data to show good agreements.

  • PDF

The Effects of Geometrical Imperfections on the Dynamic Characteristics of a Tapered Roller Bearing Cage (테이퍼 롤러 베어링 케이지의 불완전성이 통특성에 미치는 영향)

  • Ahn, Tae-Kil;Park, Jang-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.464-469
    • /
    • 2019
  • Tapered roller bearings are used widely in vans, trucks, and trains because they can support the vehicle in a stable manner even under a heavy load. The cage of a tapered roller bearing maintains the gap between the rollers, which prevents friction wear and suppresses heating. If the cage is severely deformed due to resonance, the roller may not be able to roll smoothly and even leave the cage. Consequently, it is very important to analyze the dynamic characteristics of the cage for reliable performance of a bearing. The cage essentially has geometrical tolerance in the manufacturing process. In this paper, the effects of those geometrical imperfections on the dynamic characteristics of the cage were investigated. As a result, natural frequency separation occurred near the natural frequency of the ideal cage due to geometrical imperfections. In addition, the interval was proportional to the magnitude of the geometric error, and the interval increased with increasing mode number.

Thermo-Fluid Simulation for Flow Channel Design of 7kW High-Voltage Heater for Electric Vehicles (전기차용 7kW급 고전압 히터 유로 형상 설계를 위한 열유동 시뮬레이션)

  • Son, Kwon Joong
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.3
    • /
    • pp.191-196
    • /
    • 2022
  • Unlike an international combustion engine car, a battery-powered electric vehicle requires an additional heat source for its heating system. A high-voltage coolant heater has the advantages of high efficiency and a wide operating temperature range. In its development, the geometry design of the coolant flow path is essential. This paper presents the thermal flow simulations of a 7kW high-voltage heater with symmetric serpentine flow channels arranged parallelly. The heater performance was evaluated from the simulation results in terms of the pressure and temperature differences and the flow uniformity. The proposed design showed a greater flow resistance and similar heat exchanging capability than the existing parallel serpentine design. It has the advantage of a relatively wide low-temperature surface area, where the control circuit board susceptible to high temperatures can be located.

An investigation on the ground collapse mechanism induced by cracks in a non-pressurized buried pipe through model tests (모형시험을 통한 비압력 지중관거 균열로 인한 지반함몰 메커니즘 연구)

  • Kim, Yong-Key;Nam, Kyu-Tae;Kim, Ho-Jong;Shin, Jong-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.235-253
    • /
    • 2018
  • Groundwater flow induced by cracks in a buried pipe causes ground loss in the vicinity of it which can lead to underground cavities and sinkhole problems. In this study, the ground collapse mechanism and the failure mode based on an aperture in the pipe located in cohesionless ground were investigated through a series of physical model studies. As the influence parameters, size of the crack, flow velocity in the pipe, groundwater level, ground cover depth and ground composition were adopted in order to examine how each of the parameters affected the behavior of the ground collapse. Influence of every experimental condition was evaluated by the final shape of ground failure (failure mode) and the amount of ground loss. According to the results, the failure mode appeared to be a 'Y' shape which featured a discontinuous change of the angle of erosion when a groundwater level was equal to the height of the ground depth. While in the case of a water table getting higher than the level of ground cover depth, the shape of the failure mode turned to be a 'V' shape that had a constant erosion angle. As the height of the ground depth increased, it was revealed that a mechanism where a vertically collapsed area which consisted of a width proportional to the ground height and a constant length occurred was repeated.