• Title/Summary/Keyword: 형상단순법

Search Result 101, Processing Time 0.025 seconds

Stress Distribution of a Crane Hook by Photoelasticty Using 4-step Phase Shifting Method and finite Element Method (광탄성 4단계 위상 이동법과 유한요소법에 의한 크레인 훅의 응력분포 비교)

  • Baek, Tae-Hyun;Kim, Whan;Lee, Chun-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.1
    • /
    • pp.38-44
    • /
    • 2004
  • An experimental study for a crane hook was performed to investigate the stress distribution along a certain line where the maximum and minimum stresses to be developed. On this line, the isoclinic fringe and/or principal stress direction is constant. The crane hook was modeled into a 2-dimensional plate made of urethane rubber called 'Photoflex' The Photoflex is very sensitive to a load and has low photoelastic fringe constant. The Tardy compensation method with the fringe sharpening process and the 4-step phase shifting method, was used for the photoelastic technique. Experimental results by photoelasticity were compared with the calculated stresses from the simple curved beam theory and tile finite element analysis. Ail the results were close to each other.

Three-dimensional analysis of the mufflers by BEM (경계요소법에 의한 소음기의 3차원 해석)

  • 윤제원;임정빈;권영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.19-24
    • /
    • 1995
  • 단순한 형상의 소음기는 평면파이론에 의해 비교적 간단하게 음향성능을 해석적으로 구할 수 있다. 그러나 소음기의 형상이 복잡해지거나 해석하고자 하는 주파수의 범위가 평면파의 차단주파수 이상이 될 경우 소음기 내부의 음장이 평면파에서 벗어나게 되어 평면파 이론에 의한 해석은 실제와 상당한 오차가 발생하게 되므로 음장에 대한 3차원 해석이 필요하다. 이론적으로 3차원 문제를 해석할 수 있는 경우는 형상이 극히 단순한 경우에 국한되므로 유한요소법(FEM), 경계요소법(BEM)과 같은 수치해석적인 방법이 이용되고 있다. 경계요소법은 적분 커넬(kernel)의 특이성(singularity) 문제가 있지만 대상 영역의 경계면만을 이산화함으로써 모델링에 소요되는 시간과 노력을 절약할 수 있으므로 음향문제 해석에 있어서 효율적인 방법이라고 할 수 있다. 본 연구의 목적은 3차원 경계요소법 프로그램을 개발하고 평면파이론에 의한 해석이 어려운 여러가지 형태의 소음기에 대한 음향성능을 예측하고 실험으로 검증하는것이다. 특히, 단일영역으로 해석이 불가능한 다공형 소음기에 영역분할법을 적용하여 계산하고 결과를 검토하였다.

  • PDF

Morphological Shape Decomposition using Multiscan Mode (다중스캔 모드를 이용한 형태론적인 형상분해)

  • 고덕영;최종호
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.37 no.2
    • /
    • pp.33-40
    • /
    • 2000
  • In this study, a shape decomposition method using morphological operations is studied for decomposing the complex shape in 2-D image into its simple primitive elements. The serious drawback of conventional shape representation algorithm is that primitive elements are extracted too much to represent and to describe the shape. To solve these problems, a new shape decomposition algorithm using primitive elements that are similar to the geometrical characteristics of shape and 4 scan modes is proposed in this study. The multiple primitive elements as circle, square, and rhombus are extracted by using multiscan modes in a new algorithm. This algorithm have the characteristics that description error and number of primitive elements is reduced. Then, description efficiency is improved. The procedures is also simple and the processing time is reduced.

  • PDF

Algorithm of Morphological Multimode Binary Shape Decomposition (형태론적 다중모드 2진 형상분해 알고리즘)

  • Choi, Jong-Ho
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.9
    • /
    • pp.67-75
    • /
    • 1999
  • In this paper, a shape decomposition method using morphological operations is studied for decomposing the complex shape in 2-D image into its simple primitive elements. The serious drawback of conventional shape representation algorithm is that primitive elements are extracted too much to represent and to describe the shape. To solve these problems, a new shape decomposition algorithm using primitive elements tat are similar to the geometrical characteristics of shape and 4 scan modes is proposed in this study. The multiple primitive elements as circle, square, and rhombus are extracted by using multiscan modes in a new algorithm. This algorithm have chatacteristics that description error and number of primitive elements is reduced. Then, description efficiency is improved. The procedures is also simple and the processing time is reduced.

  • PDF

A Numerical Method for Analysis of the Sound and Vibration of Waveguides Coupled with External Fluid (외부 유체와 연성된 도파관의 진동 및 소음 해석 기법)

  • Ryue, Jung-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.7
    • /
    • pp.448-457
    • /
    • 2010
  • Vibrations and wave propagations in waveguide structures can be analysed efficiently by using waveguide finite element (WFE) method. The WFE method only models the 2-dimensional cross-section of the waveguide with finite elements so that the size of the model and computing time are much less than those of the 3-dimensional FE models. For cylindrical shells or pipes which have simple cross-sections, the external coupling with fluids can be treated theoretically. For waveguides of complex cross-sectional geometries, however, numerical methods are required to deal with external fluids. In this numerical approach, the external fluid is modelled by the boundary elements (BEs) and connected to WFEs. In order to validate this WFE/BE method, a pipe submerged in water is considered in this study. The dispersion diagrams and point mobilities of the pipe simulated are compared to those that theoretically obtained. Also the acoustic powers radiated from the pipe are predicted and compared in both cases of air and water as an external medium.

Shape-Simplification Analysis Model for Fatigue Life Prediction of Casting Products Considering Internal Defects (내부 결함을 고려한 주조 제품의 피로수명 예측을 위한 결함 형상단순화 해석모델)

  • Kwak, Si-Young;Kim, Hak-Ku
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.10
    • /
    • pp.1243-1248
    • /
    • 2011
  • Internal defects are a major concern in the casting process because they have a significant influence on the strength and fatigue life of casting products. In general, they cause stress concentration and can be a starting point of cracks. Therefore, it is important to understand the effects of internal defects on mechanical properties such as fatigue life. In this study, fatigue experiments on tensile specimens with internal defects were performed. The internal defects in the casting product were scanned by an industrial CT scanner, and its shape was simplified by ellipsoidal primitives for the structural and fatigue analysis. The analysis results were compared with experimental results for casting products with internal defects. It was demonstrated that it is possible to consider internal defects of casting products in stress and fatigue analysis. The proposed method provides a tool for the prediction of the fatigue life of casting products and the investigation of the effects of internal defects on mechanical performance.

Simplification of Boundary Representation Models Based on Stepwise Volume Decomposition (단계적 볼륨분해에 기반한 경계표현 모델의 단순화)

  • Kim, Byung Chul;Mun, Duhwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.10
    • /
    • pp.1305-1313
    • /
    • 2013
  • In this study, a method to apply feature-based simplification to boundary representation models is proposed. For feature-based simplification, a volume decomposition tree is created from a boundary representation model. The volume decomposition tree is represented by regularized Boolean operations of additive volumes, subtractive volumes, and fillet/round/chamfer volumes, and it is generated by stepwise volume decomposition, which consists of fillet/round/chamfer decomposition, wrap-around decomposition, volume split decomposition, and cell-based decomposition. After the volume decomposition tree is transformed to an infix expression, the CAD model can be simplified by reordering the volumes. To verify the proposed method, a prototype system was implemented, and experiments on test cases were conducted. From the results of the experiments, it is verified that the proposed method is useful for simplifying CAD models based on boundary representation.

Analysis of sound radiation by floor vibration in the closed sound field (실내의 바닥진동에 의한 음향방사해석)

  • 최석주
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1992.06a
    • /
    • pp.137-140
    • /
    • 1992
  • 실내 바닥슬래브의 휨진동에 의한 음향방사문제에 대하여 유한요소법을 적용하여 검토하였다. 단순한 형상의 판이 휨진동하여 자유공간에 음을 방사하는 문제에 대해서는 이론적인 해를 구할 수 있으나, 임의형상의 판이 휨진동하여 실내에 음을 방사하는 문제에 대해서는 검토되지 않았다. 따라서 본 연구에서는 이와같은 문제를 단순화한 해석법으로서 먼저 유한요소법을 이용하여 판의 휨진동에 대한 고유모드의 상대변위를 구하고, 다음 상대변위를 진동속도로 변환한 결과를 입력조건으로 하여 유한요소법에 의한 3차원 음장해석을 하였다. 그 결과 실내 바닥슬래브의 휨진동에 의한 음향방사파워는 슬래브의 진동모드, 실내음향모드 및 벽흡음율 등의 조건에 따라 크게 변화된다는 것을 확인하였다.

  • PDF

Development of NDIF Method for Highly Accurate Free Vibration Analysis of Arbitrarily Shaped Plates with Simply Supported Boundary Condition (단순 지지 경계 조건을 가진 임의 형상 평판의 고정밀도 자유 진동 해석을 위한 NDIF법 개발)

  • Kang, Sang-Wook;Woo, Yoon-Hwan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.2
    • /
    • pp.186-193
    • /
    • 2011
  • The NDIF method(non-dimensional dynamic influence function method) for free vibration analysis of arbitrarily shaped plates with the simply supported edge is newly developed in the paper. In order to extract the system matrix that gives the natural frequencies and natural modes of the plate of interest, the difficulty of measuring higher differential terms involved in the simply supported boundary condition is successfully overcome. Finally, the excellence of the characteristics of convergence and accuracy of the proposed method is shown through two verification examples, which indicate that natural frequencies and natural modes obtained by the proposed method are very accurate and swiftly converged even though a small number of nodes are used compared with FEM.

An Advection Scheme for the Transport of Fractional Volume of an Incompressible Fluid (비압축성 유체의 체적비 수송에 대한 대류항 계산 기법)

  • Kwak Ho Sang;Kuwahara Kunio
    • Journal of computational fluids engineering
    • /
    • v.3 no.1
    • /
    • pp.1-10
    • /
    • 1998
  • 서로 섞이지 않는 두 비압축성 유체의 유동을 해석하기 위하여 VOF 방법에 기초한 수치 기법을 개발하였다. 유체간의 계면형상의 거동은 유동장내의 유체의 점유체적비의 변화에 의해 묘사되는데 이를 지배하는 이동방정식을 풀기 위한 새로운 대류항 계산법을 고안하였다. 대류항은 유체계면의 방향에 따라 풍상법과 역풍상법의 적절한 조합을 취하여 계산하는데 여기에 대각방향의 상류효과를 포함시켜 시간에 대한 2차 정확도를 갖도록 하였다. 또한 이 방법을 유량보정수송(FCT)법과 결합시켜 해의 단조성을 보장하였다. 몇 가지 단순 문제에 대한 시험 결과 이 기법이 수치오차에 의한 계면형상의 변형과 파손을 감소시킴을 확인하였다.

  • PDF