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An Advection Scheme for the Transport of Fractional
Volume of an Incompressible Fluid
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1. Introduction

Several numerical methods [1-6] have been
proposed to describe flows of assemblies of
immiscible fluids. These flows are characterized
by the presence of interface which divides the flow
domain intoregions of individual component fluids.
The interface is identified to be a demarcation
surface across which steep changes or
discontinuities in fluid properties take place. One
overriding concern is that, throughout the flow
domain, the constraint of divergence-free as well
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as mass conservation should be satisfied. These
pose considerable difficulties in achieving a robust
and efficient numerical solution algorithm.

One widely-utilized technique is the interface
tracking method, which is based on the Lagrangian
description of interface motion, e.g., the marker-
and-cell method [1-2] and the smooth particle
hydrodynamics [3]. This approach enjoys the
advantages of logical simplicity and easy extension
to multi-dimensional problems. The drawbacks
are huge storage requirement and difficulties
encountered in dealing with topological change of
interface and ensuring global constraints of mass
and momentum conservations.

Another well-established routine, termed the
interface capturing method, calls for one or more
additional field variables to identify fluid phase
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[4~6]. Among them, the volume of fluid (VOF)
method {4}, which employs the fractional volume
of a fluid in mixture of immiscible fluids, has
several advantages, e.g., minimum storage
requirement and compatibility with the existing
finite volume algorithms. The conservation
equation for this variable is solved by using an
advection scheme on an arbitrary Lagrangian-
Eulerian mesh. The fluid interface is traced by
monitoring sharp variations of volume fraction.
Disadvantages are that numerical errors are
generated by advection scheme, which turn up
in the form of unphysical numerical diffusion and
dispersion. For a successful application of this
method, an accurate advection scheme is essential
to capture the discontinuities and to force them
to propagate with the proper interface velocity.

Serious efforts have been given to designing
an accurate advection scheme suitable for VOF
and appreciable improvements have been reported
[4-5]). However, the preceding advection schemes
are still of low-order of accuracy both in time
and space. Furthermore, the basic framework is
grounded on uni-directional consideration for
convection terms. Consequently, a relatively
accurate prediction 1is possible for one-
dimensional interface propagation; however, for
multi-dimensional problems, these methods
produce undesirable numerical deformations.
Additional defect is that the prior advection
schemes [4-5] do not yield monotone solution.
Local overshoots and undershoots can be included
in the solution. As a remedy, an explicit cut-off
was often effectuated to limit the volume fraction
within certain range.

The primary aim of the present study is to
design a new advection scheme which addresses
these shortcomings of the existing methods based
on the VOF approach.

2. Basic Model of VOF

Consider a flow of two immiscible fluids, fluid
1 and fluid 2, of different densities 0, and p,,

respectively. The VOF technique introduces an
additional field variable, C, the volume fraction
of fluid 1, such that C=1 inside the region of fluid
1 and C=0 in the region of fluid 2. The density
in the domain is given by

p=p1C+ py(1—C). (n

In this study, method derivation is made for
a two-dimensional flow configuration. The
equation of mass conservation, together with the
constraints of incompressibility of both fluids
enforces the divergence-free velocity field and the

transport equation for C

du , Jv _
aC |, (uC) , (w0 _
3 + 9% + dy =0, 3)

where t is the time, x and y are the horizontal
and vertical coordinates, respectively. (u, v) is the
velocity vector in the (x,y) domain.

A finite-volume formulation is conducted on
a staggered grid system as shown in Fig. 1.
Integration of Eq. (3) over a control volume (width
dx; and height A4y;) and over a time interval

At yields a discretized equation:

i
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Fig. 1 Finite volume grid configuration.
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where f is flux of C at the cell boundaries and
Vi; is the volume of the cell.

A standard method to estimate f is the upwind
method. The upwind flux in the horizontal

direction, f{“1.;,based ondonor (upstream-side)

cell concept, is given by

v [ @Qim12.C-1 for Qi—1pp;20
fiZ1p,= "
Qi-112,;C%;  for Qi—yp2,€0, (5)
where @;-yp,; is the volume flux defined as
Qi-1p2,;= u i—yp.;4y;4t. This flux can be, in a

more general form, expressed as
ff12.5= Qi-12.iC~ 1122y »  (63)

where p=sign(Q;_1z ;). Similarly, the upwind

flux in the vertical direction, f;%—,/, becomes
fli-12=Qij-12Chj~12~a2 »  (6D)

where Qi./- 2= i,i—1/2 Ax,dt and

g=s1gn(Q; j—1p).
In contrast, the downwind fluxing scheme uses
the value in the acceptor (downstream-side) cell.
In an analogous manner to Eq. (6), the downwind

fluxes, f1, and £ _ 12, are defined as

d

fi212,i= Qi-112.iC - 112+ p12.5 » (7a)
d

[-1p=Qij=1Chi- 12+ a2 - (Tb)

Obviously, in these fluxing schemes, only the
nearest neighboring grid points are taken into
consideration. The upwind (downwind) scheme
portrays correctly the interface speed when
interface is nearly parallel (perpendicular) to flow.
The drawback of the upwind scheme is the
numerical diffusion which tends to smear out
interface over a number of grid points. The

downwind scheme enjoys a favorable capability
of surface sharpening but is prone to numerical
instability [5).

In this study, two fluxing operators are
introduced for a brief description:

Fx(a,;,Q,C,V,6)
_ { QCo-sp2.j for G-y 26°
s- max[ Fx,;, Gx,;l for G5 < 6°,

(8a)
Fy(i,a,Q,C, V, 6)
={ QCi.a-s2 for 07 ,-gp26°
§* max[ Fj’i,a’ Gyi,a] for 0{:)—:/2( 0c»

(8b)
where

Fio = min[QCoss.j» Ca-sr2. Va-s2.il,
Gxai=Q—(1—Cozs2. ) Var g2,
EY; o= min[QC; a4 52, Ci.amsp2 Viamsi2],
(9:,e=1Q— (1= Ci s Vi oo 52

in which s= sign( Q).

In an effort to rectify the above-described
disadvantages, Lafaurie et al. [5] devised a fluxing
scheme based on a weighted average of these two
fluxes. The scheme of Lafaurie et al. [5] can be
represented as

fici,i=Fx(i—1/2,7,Qi-1p2.;, C, V, 6), (9a)
fii-ip=F¥(i,j—1/2,Q; ;-11, C, V,6). (9b)

The idea is to select a proper fluxing scheme in
light of the relative orientation of interface. The
downwind (upwind) scheme is selected when the
interface is mainly perpendicular (parallel) to the
flow direction. To this end, the directional angles
of interface are calculated

& = cos "!(|n*|),
6= cos ~(|»*).

(10a)
(10b)

where n* and ' are the x- and y-components of
unit normal vector to interface, n=V C/IV I, as
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Fig. 2 Directional angle of interface.

shown in Fig. 2. The optimal values of ¢ in Eq.
(8) were suggested 1.0<8°%1.05 [5].

3. Fluxing Scheme Including the
Cross-Directional Upstream Effects

The scheme of Eq. (9), which provides an
accurate prediction of interface motion in one-
dimensional flow, can create undesirable numerical
errors under multi-dimensional situations. Fig. 3
is illustrative of such interface deformation. A
two-dimensional square domain filled with fluid
1 is propagated in a uniform flow field (¢, v)=(1,1)
during a unit time step. As seen in Fig. 3(b), the
cell A can not feel any impact of the upstream
cell B, since all the fluxes advected into cell A
do not contain any information of cell B.
Consequently, the region near leading edge
undergoes distortions. In a similar manner, shape
changes can take place mainly in the corner regions
as shown in Fig. 3(a). Another type of numerical
interface deformation may be found when a
rectangular domain is rotated (see, eg. [5]).
Numerical errors turn up in the form of large
amounts of flotsam on large lattice and spatial
zigzag oscillations on the surfaces.

These anomalies are due to the one-
dimensional-like representation of flux terms. One
significant approach to minimize these errors is

(b)

Fig. 3 Pure propagation of a square
domain in a uniform velocity field
(y,v)=(1,1). The heavy lines indicate the
initial condition (£=0) and the exact
solution after a time step, A=05Ax/u.
The shaded area in frame (a) represents
the numerical solution acquired by Eq.(9).
Fig. 3(b) shows an enlarged view near the
leading edge of the square at ¢=0.

toinclude the cross-directional stream effects. Fig.
4 portrays the baseline idea to do this,
Consider a vertical transport of C from the cell

(i,j—1) tothe cell (,7) by Q;;-1/2(>0). The
volume occupied by fluid 1 in the cell (z,7) at
t=t, is represented by the area of region (A+B)
in Fig. 4. Allowing a strictly one-dimensional
transport due to @; ;j—y/, the volume of fluid 1
in the cell (7,7) at time ¢=t,+, becomes the
area of the region (B+C). Thus, a second-order

approximation of Cin the cell (7, 7) at time n+1/2
can be estimated as

CA+B+ CB+C

+1/2 .,
CZ/‘ ~ 2

. B+C
Gty

2

The area of region C is equivalent to the amount
of volume fraction advected into the cell (i, 7)
(i,7—1) during 4t via
Q; ;—172- This can be estimated as

from the lower cell



F&ol @ 7 ANNY

3 15R. 1998. 10 H[ G2 A f-A1 9] A Ay

/"D=Q e S~

A A

B|/x -?— x - z X

c ‘ c
o Xt

% 3 , 7
AL L

(@) (b)

Fig. 4 The mechanism to put the cross-
directional upstream effects into the flux. All
the hatched regions indicates domain filled with
fluid 1.

Co=f2
=P Fy(i,i—1/2, Qi ;-15.C, V. 6), (12a)

where af;= max [0, sign(Q; ;_12)1.

The remained task is to calculate the area of
region B, which can be readily accomplished by
subtracting the area of region A from the area
of region (A+B). The area of region A can be
interpreted to be the amount of the volume fraction
advected out to the upper cell (Z,7+ 1) from the
cell (7,7) due to Q; ;. This quantity can be
determined as

cA-
=al Fy(i,j+1/2, Q:j-12.C. V,60). (13)

The area of region B becomes
CB=cCcA*B—Cci=cCr,—Cc% a9

Finally, Cff,“/ 2 containing the impact of vertical

transport from the bottom cell (i,j-1), can be
acquired:

n+1/2 ” i
c: ~c,,+——~J—2V” (15)

In this way, f;1/.,, evaluated by using Cff,“/z

contains the cross-directional upstream effects.
The above idea can be extended to general
situations. Consider all the positive volume fluxes

advected into the cell (7, ) from the neighboring
cells. The vertical flux of C advected into the cell

(3, 7) from the upper cell due to a negative volume
flux at the top boundary @;;.1/,(<0) and the

associated flux advected out of the cell (7,7) to

thelowercell (7, j—1) canbeestimated similarly,
T = alFy(i, j+1/2, Qii+12.C. V, 0, (16)

where a;= min[0, sign(Q; ;+ y2)].  Likewise,
the contributions of the horizontal fluxes advected
into the cell (7, 7) from the left and right vertical

boundaries can be evaluated,

fii = abiFx(i¥1/2,7,Qi-112,,C, V. 0), (U7
5 =¥ Fx(i£1/2,7,Qi4 10, C, V. 6), (18)

where af, = max[0, sign(Q;_1; ;)] and aF,

= min [0, sign( Q; 12, )1.

Here, two temporary volume fractions at an
intermediate time step n+1/2 are defined. These
contain the effects of vertical and horizontal

transports of the volume fraction from the
upstream cells, respectively:

= A=A

Y _
C,",'—C,"j ZV;" ’ (19)
Lt A~ R+ _ -
cl=cr+ 1L ﬁ'z;f_f’ ff’. (20)
LiY]

Now, the horizontal and vertical fluxes of C are
Cc%; and C},
the present fluxing

determined by using the values

respectively. Therefore,
scheme yields

*»
fi—l/Z.)

=Fx(i—1/2,/,Qi—1p. ;s CY, V,0)  (21a)
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*
fii-we

=Fy(i,j—1/2, Qij-112,. C*, V,6)  (21b)

It is noted that the scheme of Eq. (21) seems
almost the same as that of Eq. (9) of Lafaurie

et al. (5]. In fact, the same values of @ and 4t
areused. Theonly differenceisthat C},isreplaced
by C¥ and C},
directional upstream influences.

It is worth pointing out that the procedure of
Eqs. (12)-(21) is free from a directional bias. The

extension of the present method for the three-
dimensional situations is straightforward.

to incorporate the cross-

4. Interlink with FCT for Monotonicity

An essential aspect of the advection scheme
of Eq. (21) is a judicious blending of the upwind
and downwind schemes and the front-sharpening
feature is originated from the downwind scheme.
The antidiffusive nature of the downwind scheme
is useful for interface-capturing, but it leads to
a defect that the monotonic solution is not
guaranteed. A non-monotone advection scheme
can generate unphysical overshoots and/or
undershoots. In order to prevent such a deficiency,
a cut-off filtering has been executed in calculating
the fluxes, such that C should be bounded between
0 and 1. This artificial cut-off may, in turn, result
in a local gain or loss of the fluid volume. In the
present study, a more reasonable method to realize
the monotonicity is explored.

The flux-corrected transport (FCT) is a
technique to achieve both monotonicity and
accuracy of an advection scheme which are
mutually exclusive [7-9). The basic idea of FCT

is the two-step evaluation of the advection terms;.

a fully-diffusive monotonic solution is acquired
and subsequently a higher-order antidiffusive flux
is superposed on the diffusive solution to reduce
numerical diffusion. Among others, the generalized
formulation of FCT by Zalesak [8] has several
attractive features. First, the formulation is

essentially multi-dimensional, which produces no
directional bias. More appealing is the generality
of the formulation; monotonicity can be ensured
by using combination of any lower-order diffusive
scheme and any accurate higher-order advection
scheme. The detailed flux correcting procedure
of Zalesak will not be reproduced, which can be
referred to [8].

It is worth pointing out that, although the
cross—directional upstream effects are included,
the present advection scheme consists of two basic
fluxing schemes, i.e., the diffusive upwind scheme
and the downwind scheme of antidiffusive nature.
It is then advantageous to treat the flux given
by the upwind scheme as the diffusive flux, and
to define the flux given by the downwind scheme
as the higher-order anti-diffusive flux, i.e.,

FiE = FE2.= Qic1zi Ci-12-pr2., » (222)
fh1e=f%5-12= Qij-12Cij-172-a2 , (22b)
=i (23a)
fi,};{'—llz=fi.'j—l/2 . (23b)

By using these fluxes, the Zalesak’s generalized
FCT procedure can be applied as follows.

(i) Compute f= 1.5 f5-1pand fZ 15 -1
(ii) Compute the updated lower-order transported
and diffused solution,

Cz:}k+ D_ Cg-]fl(k). (24)

(iii) Define the antidiffusive fluxes,

) = (1= B Vs (25a)
x P K
D =(1— B8 )8, . (25b)
(iv) Limit the antidiffusive fluxes,
D) _ plh+D) odk+1)
i—1/2.5 = Bi-12.i-112.7 1 (26a)
d(k+1) __ (k+ 1) (k+1)
152072 = Bii—ipfii-1/z - (26b)

(v) Apply the limited antidiffusive fluxes to obtain
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new values, C;',
n+1(k+1) _ ~td(k+1)
Cii =Cij

k1) B+ £+1) E+1)

" A — S+ ) — Y @n
7 )
L7

In the above, k denotes the iteration level. The
Zalesak’s flux limiting of Eqgs. (24)-(27) was
originally a one-through-step method biased to
the strategy of guaranteeing a monotone solution

[8]. Under the present situation O %)~ O(f*%
near interface, one-through-step evaluation of
fluxes does not provide sufficient antidiffusion to
be applicable without violating monotonicity;
rather, it gives only a minimal antidiffusion. In
order to satisfy both the constraints of
surface-sharpening and monotonicity, an iterative
routine is designed as shown in Egs. (24)-(27).
The values at zero-iteration step (initial guess)
are given as follows:

Ct"f;-m» =Ci,

fiapi—Fapit s — fing

+ . , (28)
i

== (29a)

== e (29b)

Dipn.i= B12,;=0. (30)

Iteration is performed until the relative variations
between two successive iteration steps fall below
a prescribed value. It is noted that this iteration
does not create new maxima or minima since the
antidiffusive fluxes are limited to ensure the
monotonic solution at each iteration step. Only
a right amount of the antidiffusive flux, which
does not produce new extrema but was not included
in the previous iteration step, is considered in the
new iteration step. This method becomes identical
to the original FCT of Zalesak if only one iteration
is conducted.

5. Results of Verification Tests

Two simple test problems which were
considered by Lafaurie et al. [5] are reproduced
to reveal the interface-capturing feature of the
present advection scheme.

First, consider a 10X 10 square domain of cells
on a grid system with a uniform spacing
dx= 4y= 1. This block is transported diagonally
via a uniform velocity field (u,v)=(1,1) until £=50.
Numerical experiments were conducted by
applying the present advection scheme and the
scheme of Lafaurieet al. [5] with the same condition

#°=1.05. The results are illustrated in Fig. 5
by depicting contour plots for the values of volume
fraction, C=0.05, 0.4, 0.6, 0.95.

It is discemible that the previous method of
Eq. (9) produces noticeable distortions near the
corner regions as illustrated in Fig. 3. In contrast,
the present advection scheme yields an improved
feature of maintaining the shape. This is indicative
of the fact the distortions near the corner regions
are mainly responsible for the aforementioned
one~-dimensional representation of the fluxes. The
present advection scheme suppresses much of this
local numerical error by incorporating the cross-
directional upstream effects into the fluxes.

An essential task in assessing the accuracy
of an advection scheme for volume fraction is to
measure global change of interface in which both
of diffusion and distortion of interface are included.
In an effort to quantify global change of interface,
a parameter to represent an error relative to the
exact solution is defined as

220Cs - C
E= —L I e
Sy

, (31)

where the superscripts e and ns denote the exact
solution and the numerical solution, respectively.
The values of E for the corresponding cases are
also given in Fig. 5. It is clear that the present
advection scheme gives much smaller values of
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Fig.5 Results of pure translation of a square
domain at t=50: (a) the previous scheme of Eq.
(9); (b) the present advection scheme. The value
of E defined in Eq. (31) is given in the lower
part of each frame.

E in comparison with the scheme of Eq. (9). In
view of both local and global shape changes, the
present advection scheme displays improved
features of interface transport.

Additional important finding in Fig. 5 is that
numerical error of the present scheme does not
vary significantly with time step 4¢. It is worth
pointing out that the accuracy of conventional VOF
methods [4,5] is very sensitive to time step. As
shown in Fig. 5, even for a time step satisfying
CFL condition, numerical error of the scheme of
Eq. (9) becomes more conspicuous as 4f increases
(see both the shape and the value of E). Owing
to the second order accuracy in time, the present
advection scheme gives a better behavior with

variation of 4¢.

[}

Fig. 6 Numerical errors of the present
advection scheme for the problem in Fig. 5: (a)
E, (b) E.. Errors are estimated at time t=50
by using different time increment O, 4¢=1/2;
Q, 4t=1/4; A, 4t=1/8, @, 4t=1/16; A, 4t
=1/32; A, At=1/64.

Numerical tests were also performed by
varying the critical angle 6 and 4¢. The results
are summarized in Fig. 6. It is seen that a principal
parameter to determine numerical error is 6°
rather than Jt¢. It is confirmed that the numerical
accuracy of the present advection scheme is less
sensitive to 4t. Fig. 6(a) suggests the optimal
value of the critical angle 1.07<6°<1.11. Here,
it should be noted that this estimation is made
from a test of transport of a square block in uniform
velocity field. The optimum value of 6° may be
dependent on flow condition and interface shape.
A subsequent numerical experiments are needed
for finding the optimum value of 8¢ under more
general flow situations.
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An interesting point in Fig. 3 is that E for
4t=1/2 is smaller than those of other cases. This
is attributable to the fact that the present scheme
was particularly designed to give an improved
solution for the problem of rectangular domain
propagation under a two~dimensional uniform
flow field. It is noted that, for this test problem
with dx=dy=u=v=1, At is identical to the
CFLnumber, Co= udt/ dx. Actually, when 4t=1,
the present scheme results in a good solution which
is in agreement with the exact solution within
machine accuracy. This is in line with the fact
that the previous fluxing schemes [4,5] also
provides an accurate prediction of one-
dimensional interface propagation under the same
condition Co== 1. Therefore, for this test problem,
E decreases as 4t approaches to the CFL value,
ie, 4t=1. A point worth being stressed here
is the favorable aspect of the present advection
scheme that, for relatively small values of 4¢,
FE is insensitive to A4t.

Another issue in discussing advection scheme
for volume fraction is conservation of total volume.

Fig. 6(b) exhibits the error of volume conservation
defined as

E 2022 (32)
S T

The present advection scheme is based on the
conservative formulation on a finite volume mesh
and the monotonicity is guaranteed by adopting
FCT procedure without any artificial cut-off.
Naturally, the total volume conservation is
satisfied within the machine accuracy. The errors
depicted in Fig. 6(b) can be interpreted as
accumulation of round-off errors.

The second test problem is the rotation of a
30X10 rectangular domain, for which the
conventional advection schemes gave poor results
(see e.g., Fig. 7 in [5]). The pronounced effect of
rotation generated a large amount of flotsam on
large lattices, or spikes were created on the flat

4°_|II|III'IIIIII_I'_ 40-”]”'!”"”'-
L time=0.0 h [ 3/8 rotation ]
200 - 201 —
y r 1 Y r N
P 3 4 f :
N - N -
20F 4 - -
- 1 s ]
FrIENE NERE FNEY FETE -40 |4|||||L1|||:|-

40 -20 0x20 40 -40 -20 0x20 40

40 40
MALAE RS RN RAARRERNEEEEREER
C 5/8 rotation ] t 1 rotation ]

20— — 20(_ —
: 1 vk ]

yi— -~ y-—

20 - 2o =
- g - 4
- - - -

0liaales o byeods s P IEWE FETE PN SUR)

-40 -20 0 X 20 40 -40 -20 0 x 20 40

Fig. 7 Results of the rotation of a rectangle.

surfaces of the rectangle. As seen in Fig. 7, the
present advection scheme gives better prediction
of interface motion; there is no flotsam and
deformation of the rectangular shape is much
suppressed in comparison to the results in [5].

Finally, the present numerical model is tested
for a benchmark flow configuration. In many
respects of VOF, the solver to the Navier-Stokes
equations constitutes a separate part, which can
be pursed independently of the interface capturing
described in the previous chapters. For this test,
a numerical model based on SIMPLE [10] was
used, which was coupled with the calculation
routine for C via the density. The broken dam
problem in Hirt and Nicholas [4] is reproduced;
the water column of 1 units wide and 2 unit high
is allowed to flow out along a dry horizontal floor
by removing dam at £=0. The gravity vector g
is downward. The position of the leading edge
of the water vs time is depicted in Fig. 8. The
present numerical prediction shows a good

agreement with the experimental data [4].

6. Conclusion

An advection scheme based on the VOF is
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Fig. 8 Comparison of calculated results
with experimental data for the broken dam
problem.

developed as a means to describe the interface
between two immiscible fluids. The key elements
of the present scheme are (1) to achieve the
second-order time accuracy by taking into account
the cross—directional upstream effects, and (2) to
guarantee the monotonicity by interlinking it with
the FCT technique. Verification tests revealed that
the present scheme provides an improved
prediction of interface motion in comparison to
the prior versions [4-5].
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