이 논문에서는 여러 대의 로봇들이 협력하여 미로를 탈출하는 방법을 제안한다. 논문에서 사용된 교육용 로봇들은 ZigBee로 서로 통신할 수 있으나, 로봇들의 연산기능이 낮아 서로 협력하여 문제를 해결할 수 없다. 로봇의 모션제어로 통로를 직립 보행하도록 하였으며, 절대거리 센서를 이용하여 교차로와 막다른 골목을 인식하면 중앙제어 시스템에 전송하여 명령을 받는다. 여러 로봇들이 동시에 미로에 들어가서 효과적으로 미로를 탐색하도록 하는 미로 탐색 알고리즘을 수정하였다.
이 논문에서는 군집 로봇들이 미로 탈출을 위해 협력하는 방법에 대해 제안한다. 로봇들은 ZIGBEE로 서로 통신할 수 있으나 로봇들의 연산기능이 낮아 중앙제어 시스템이 로봇들에게 명령을 전달한다. 로봇들은 보이지 않는 미로를 탐색하며 지도를 만들기 위해 이동과 같은 정보를 중앙제어 시스템에 전송한다. 중앙제어시스템은 수신된 데이터를 분석하여 미로 탈출을 위한 경로를 찾는다.
본 논문에서는 퍼지 로직을 이용하여 로봇과 공의 상태에 따른 로봇 행동의 선택 알고리즘을 제시한다. 전략 및 전술 알고리즘으로 많이 알려진 Modular Q-학습 알고리즘은 개체의 수에 따른 상태수를 지수 함수적으로 증가시킬 뿐만 아니라, 로봇이 협력하기 위해 중재자 모듈이라는 별도의 알고리즘을 필요로 한다. 그러나 앞으로 제시하는 퍼지 로직을 적용한 로봇축구 전략 및 전술 알고리즘은 퍼지 로직을 이용하여 로봇의 주행 알고리즘을 선택하는 과정과 로봇의 행동을 협력하는 과정을 동시에 구현함으로써, 계산 양을 줄여 로봇 축구에 보다 적합하게 해준다.
유비쿼터스 환경에서 상황인지 능력을 가진 지능적 컴퓨팅 개체들 중 사람에게 의존적이지 않고 독립적으로 행동할 수 있는 개체는 유비쿼터스 로봇으로 볼 수 있다. 이러한 로봇은 최근 상호협력 함으로서 보다 최적화된 서비스를 제공하는 연구가 진행되고 있으며, 또한 다수의 로봇이 포함된 환경일 때는 특정한 작업을 수행하기 위하여 특정 로봇의 선별에 관한 연구가 진행 중이다. 본 논문에서는 유비쿼터스 환경에서 서로 다른 기능과 구조를 가지고 있는 지능형 로봇들이 협력하여 특수한 상황이나 임무를 그룹으로 대처할 수 있는 로봇 그룹핑을 설계하고 이를 구현한 결과에 대하여 기술한다. 다수의 로봇 중에서 특정 임무수행을 위한 로봇의 선별 알고리즘은 Entropy를 이용하여 결정 트리를 생성하였다. 또한 Grouping을 위한 Group Layer를 설계하여 구현하였다.
디지털 트윈이란 현실 세계의 물리적인 사물을 컴퓨터 상에 동일하게 가상화 시키는 기술을 의미하는 것으로, 물리적 사물이나 시스템을 모델링하거나 IoT 기술에 접목되어 활용되고 있는 기술이다. 디지털 트윈 기술은 가상의 모델을 무한정 시뮬레이션을 통해 동작을 튜닝하고 환경변화에 대한 대응을 미리 실험하여 리스크를 최소화할 수 있는 장점을 지닌다. 최근 인공지능이나 기계학습에 관련된 기술들이 주목받기 시작하면서, 이와 같은 물리적인 사물의 모델링 작업을 데이터 기반으로 수행하려는 시도가 증가하고 있다. 특히, 산업현장에서 많이 활용되는 인더스트리 4.0 공장 자동화의 핵심인 협력 로봇의 디지털 트윈을 구축하기 위해서는 로봇의 동작을 인지하는 과정이 필수적으로 요구된다. 그러나 현재 협력 로봇의 동작을 인지하기 위한 시도는 미비하며, 센서 데이터를 기반으로 동작을 역으로 예측하는 기술은 더욱 그렇다. 따라서 본 논문에서는 로봇의 동작을 인지하기 위해 가정용 협력 로봇에서 전류 및 관성 데이터를 수집하기 위한 실험 환경을 구축하고, 수집한 센서 데이터를 기반으로 한 동작 예측 모델을 제안하고자 한다. 제안하는 방식은 로봇의 동작 명령어를 조인트 위치 기반으로 분류하고 전류와 위치 센서 값을 사용하여 학습을 통해 예측하는 방식이다. SVM 을 이용하여 학습한 결과, 모델의 성능은 평균적으로 정확도, 정밀도, 및 재현율이 모두 96%로 평가되었다.
로봇의 발전 동향을 살펴보면, 기존의 위치 기반제어를 통하여 단순반복 재생 하는 로봇에서 인간과 로봇이 협력할 수 있는 로봇으로 그리고 궁극적으로는 독자적인 작업지능을 갖고서 독립적으로 운용되거나 인간과 공존할 수 있는 로봇으로 개발되어 나아갈 것으로 예상된다. 다만 현재까지의 로봇 기술로는 로봇 독자적으로 완전한 작업지능을 구현하기가 힘들기 때문에 그 중간 단계로써 사람과의 협력 작업을 구현하고 하는 것이다. 이처럼 인간-로봇 협업 기술은 인간의 지능과 로봇의 성능을 결합하여 고도의 작업을 구현할 수 있는 기술로써 로봇의 사용법을 모르는 현장 작업자도 로봇의 말단부를 잡고 손쉽게 로봇에 명령을 지시할 수 있다. 따라서 로봇의 응용 범위가 매우 다양해지고, 특히 로봇 전문인력이 없고 다품종 변량 생산을 주로 하는 중소기업에서의 로봇 활용을 촉진시켜 작업 환경 개선과 생산성 향상이 가능해진다. 또한 제조업용 로봇 분야에서 뿐만 아니라 범용성이 강한 기술로 개인서비스 로봇에서부터 국방, 건설, 의료 등 전문 서비스 로봇에 이르기 까지 폭넓게 적용될 수 있다. 이러한 인간-로봇 협업을 위해 필요한 기술들로는 경량형 로봇팔 기술, 인간-로봇 협조 제어 기술, 인간-로봇 안전 기술, 작업자 편이를 위한 인터페이스 기술 등이 포함되며 향후 기술의 발전에 따라 그 파급효과가 극대화될 것으로 기대된다.
본 논문에서는 로봇군집이 미로 탈출을 위해 협력하는 방법에 대해 제안되었다. 로봇은 센서를 통해 필수적인 데이터를 수집하고 판단하여 자율적으로 움직일 수 있다. 하지만 미로 탈출을 위해 협력하기 위해서는 중앙 시스템이 여러 로봇들을 제어할 필요가 있다. 로봇들은 보이지 않는 미로를 탐색하며, 탈출 경로를 위한 분석과 지도를 만들기 위해 이동과 같은 정보를 중앙제어시스템에 전송한다. 여러 대의 로봇들이 미로를 효과적으로 탈출하기 위해서, 이 논문에서는 다음과 같은 문제를 고려하였다. 첫째, 로봇들이 미로 영역을 나누어서 탐색하기. 둘째, 벽으로 막혀 있는 막다른 골목을 찾아서 다른 로봇이 진입하지 못하도록 하기. 셋째, 목적지에 먼저 도착한 로봇이 최단 경로를 만들어 다른 로봇이 빨리 탈출할 수 있도록 하기. 위의 3가지를 고려하여 미로 동시 탈출을 위한 알고리즘을 구현하여 다양한 미로 크기별로 실험하였다.
노인 복지 환경에서 혼합주도 협력(mixed-initiative collaboration)이 가능한 로봇의 지능 개발이 본 연구의 궁극적인 목표이다. 본 논문에서는 다양한 담화(discourse)으로부터 협력 과정들을 분석하여 상호 주도 협력을 위한 이슈들을 찾아내고, 이러한 주요 요소를 바탕으로 상대 인지시스템의 사용자 모델(user model)을 포함할 수 있는 상호 스크립트 모형(joint script model)을 제안하고 이를 이용한 로봇 계획법(robot planning)의 방법론과 실험에 대한 접근법을 제시한다.
디지털 트윈은 현실 세계의 물리적인 사물을 컴퓨터상에 동일하게 가상화시키는 기술로써, IoT을 통해 센서 데이터를 수집하고, 수집한 데이터를 활용하여 물리적인 사물과 가상 사물을 양방향으로 연결을 할 수 있게 한다. 디지털 트윈 기술은 가상 모델의 시뮬레이션을 통해 동작을 조정하고 환경변화에 대한 대응을 미리 실험하여 위험성을 최소화할 수 있는 장점을 지닌다. 최근 인공지능이나 기계학습에 관련된 기술들이 주목받기 시작하면서, 물리적인 사물의 동작을 가상화하여 가상 모델을 관찰하고 다양한 시나리오를 적용하려는 시도가 증가하고 있다. 특히, 인더스트리 4.0에서 공장자동화의 핵심인 협력 로봇의 디지털 트윈을 구축하기 위해서는 로봇의 동작을 인지하는 과정이 필수적으로 요구된다. 로봇의 동작을 인지하기 위한 모델링 기반의 연구에 비해 센서 데이터 기반으로 동작을 예측하는 연구는 미비한 상황이다. 따라서 본 논문에서는 로봇의 동작을 인지하기 위해 가정용 협력 로봇에서 전류 및 관성 센서 데이터를 수집하기 위한 실험 환경을 구축하고, 수집한 센서 데이터를 기반으로 한 동작 예측 모델을 제안하고자 한다. 제안하는 방식은 조인트 위치 기반으로 로봇의 동작 명령어를 9가지로 분류하고 전류와 관성 센서값을 사용하여 학습을 통해 예측하는 방식이다. 이때, 학습에 사용되는 데이터는 협력 로봇이 동작 명령어의 입력 파라미터에 마진을 가지고 작동할 때 수집되는 센서값이다. 이를 통해, 동일한 경로를 따라 이동하는 9가지 동작뿐만 아니라 각 동작과 비슷한 경로를 따라 이동하는 동작에 대해서도 예측하는 모델을 구축하였다. SVM을 이용하여 학습한 결과, 모델의 성능은 평균적으로 정확도, 정밀도, 및 재현율이 모두 97%로 평가되었다.
정보화 시대의 개인의 개성과 창의력은 지식산업에 요구되는 시대적 요청이다. 로봇 프로그래밍 교육이 학습자의 창의성 신장의 측면에 있어 의미 있는 효과가 있는 것으로 알려지고 있다. 기존의 로봇프로그래밍 도구들은 텍스트 기반 혹은 GUI 기반 저작도구기능을 가지고 있다. 그러나 대부분의 프로그래밍 도구들은 상호작용기능이 없는 단순한 튜토리얼을 제공하고 있는 실정이다. 본 연구에서는 웹 2.0의 상호작용 기술을 응용하여, 협력 코드 생성이 가능한 로봇 프로그래밍 교육 시스템을 연구하였다. 시스템이 제공하는 협력코드 생성기능을 통해 학습자들은 협력하여 로봇 프로그래밍을 생성하는 경험을 할 수 있다. 또한 학습자들은 지식공유 기능을 활용하여 효과적인 프로그램 디자인의 경험과 소스코드의 공유가 가능하다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.