Annual Conference of KIPS (한국정보처리학회:학술대회논문집)
- 2019.05a
- /
- Pages.552-555
- /
- 2019
- /
- 2005-0011(pISSN)
- /
- 2671-7298(eISSN)
DOI QR Code
Development of Sensor Data-based Motion Prediction Model for Home Co-Robot
가정용 협력 로봇의 센서 데이터 기반 실행동작 예측 모델 개발
- Yoo, Sungyeob (Dept. of Electrical and Computer Engineering, Ajou University) ;
- Yoo, Dong-Yeon (Dept. of Electrical and Computer Engineering, Ajou University) ;
- Park, Ye-Seul (Dept. of Electrical and Computer Engineering, Ajou University) ;
- Lee, Jung-Won (Dept. of Electrical and Computer Engineering, Ajou University)
- Published : 2019.05.10
Abstract
디지털 트윈이란 현실 세계의 물리적인 사물을 컴퓨터 상에 동일하게 가상화 시키는 기술을 의미하는 것으로, 물리적 사물이나 시스템을 모델링하거나 IoT 기술에 접목되어 활용되고 있는 기술이다. 디지털 트윈 기술은 가상의 모델을 무한정 시뮬레이션을 통해 동작을 튜닝하고 환경변화에 대한 대응을 미리 실험하여 리스크를 최소화할 수 있는 장점을 지닌다. 최근 인공지능이나 기계학습에 관련된 기술들이 주목받기 시작하면서, 이와 같은 물리적인 사물의 모델링 작업을 데이터 기반으로 수행하려는 시도가 증가하고 있다. 특히, 산업현장에서 많이 활용되는 인더스트리 4.0 공장 자동화의 핵심인 협력 로봇의 디지털 트윈을 구축하기 위해서는 로봇의 동작을 인지하는 과정이 필수적으로 요구된다. 그러나 현재 협력 로봇의 동작을 인지하기 위한 시도는 미비하며, 센서 데이터를 기반으로 동작을 역으로 예측하는 기술은 더욱 그렇다. 따라서 본 논문에서는 로봇의 동작을 인지하기 위해 가정용 협력 로봇에서 전류 및 관성 데이터를 수집하기 위한 실험 환경을 구축하고, 수집한 센서 데이터를 기반으로 한 동작 예측 모델을 제안하고자 한다. 제안하는 방식은 로봇의 동작 명령어를 조인트 위치 기반으로 분류하고 전류와 위치 센서 값을 사용하여 학습을 통해 예측하는 방식이다. SVM 을 이용하여 학습한 결과, 모델의 성능은 평균적으로 정확도, 정밀도, 및 재현율이 모두 96%로 평가되었다.
Keywords