• Title/Summary/Keyword: 혐기 발효

Search Result 214, Processing Time 0.023 seconds

Characteristics of Lactic Acid Production by Lactobacillus buchneri Isolated from Kimchi (김치에서 분리된 Lactobacillus buchneri의 젖산 생산 특성)

  • Sim, Hyun-Su;Kim, Myoung-Dong
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.3
    • /
    • pp.286-290
    • /
    • 2015
  • Lactic acid is a useful platform chemical for a wide range of food and industrial applications such as pharmaceuticals and cosmetics. Among 313 strains of lactic acid bacteria isolated from different traditional Korean fermented foods, eight Lactobacillus strains effectively utilized xylose as a carbon source to produce lactic acid. A lactic acid bacterium identified as Lactobacillus buchneri produced the highest amount of lactic acid from xylose under anaerobic conditions. The optimum xylose concentration and incubation temperature were 50 g/l and 37℃, respectively; under these conditions, 22.3 g/l lactic acid was produced.

Applications and technical standards for biogas (바이오가스 활용과 품질기준)

  • Kim, Seung-Soo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.18 no.3
    • /
    • pp.38-49
    • /
    • 2010
  • The technology of anaerobic digestion of organic wastes has been researched for the production of biogas in various purposes. Biogas comes from anaerobic digestion and landfill in which that of main components are methane and carbon dioxide containing small amount of hydrogen sulfide and ammonia. Biogas can either be used directly on the site where it is generated after proper upgrading or distributed to external customer via separate pipelines like natural gas. There are four basic ways biogas can be utilized such as production of heat and steam, electricity production, vehicle fuel and production of chemicals. There is no international technical standard for biogas use but some countries have developed national standards and procedures for biogas use. In this paper, technical standards of biogas depending on purpose have reviewed for the several countries.

Fermentation of Cucurbita maxima Extracts with Microganisms from Kimchi (김치 유래 유산균을 이용한 단호박 발효음료 제조 기술 개발)

  • Roh, Hyun-Ji;Kim, Gi-Eun
    • KSBB Journal
    • /
    • v.24 no.2
    • /
    • pp.149-155
    • /
    • 2009
  • 19 strains, which could be identified as Lactobacillus sp. were isolated. The Cucurbita maxima has been known as a traditional healthy food and variable positive effects on the human body were already reported. In this study we tried to develop a production process for a healthy fermented drink with Cucurbita maxima and strains originated from Kimchi. Many kinds of lacctobacci species existed in the fermented food cannot survive in the acidic conditions in the stomach. So we tried to search and select a strain, which can arrive to the small intestine. A species of a Lactobacillus named as C332 was identifed as Lactobacillus plantarum and selected for the fermentation process. With the treatment with artificial gastric juice and artificial bile the survival rate of the cells could be calculated. The physiological characteristics at the variable conditions have been tested. After fermentation process the sensoric tests on the product with panels were tried. The most of the cells could survive in the acidic conditions and falcultive anaerobe. Especially some antibacterial effects aganinst E.coli were also found. With all kinds of the results from our research the fermented Cucurbita maxima drink can be a successful item in the market.

미생물에 의한 산업폐수처리

  • 시천방개
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 1979.10a
    • /
    • pp.240.1-240
    • /
    • 1979
  • 하천, 호소등의 자정작용(Stream self purification), 즉 미생물에 의한 수중의 유기물의 안정화는, 유기물의 산화분해와 미생물세포의 합성이라는 두가지 대사과정의 조합에 의해 달성된다. 미생물에 의한 폐수처리는, 상술한 자연계의 자정작용을 인공적으로 관리, 운영하는 것이다. 즉, 미생물은 폐수중의 유기영양물을 산화분해하므로써 세포의 합성과 유지에 필요한 energy를 획득하며, 한편 폐수중의 유기물은 산화되어 안정화된다. 이산화반응을 생물학적산화라고 하며, 호기적산화와 혐기적산화의 두가지 형식으로 구별된다. 여기서는 폐수처리에 관여하는 미생물의 분류, 또 폐수처리의 형식으로 호기적산화(산화지, 활성 오이법, 산포처상법 및 회전원판법)와 혐기적산화(Methane발효법)에 대해서 설명한다. 활성오이법 에서 bulking 현상에 대해서도 언급하며, 미생물에 의한 폐수처리의 원리와함께 동력학식의 활성오이법에의 응용에 대해서도 설명한다.

  • PDF

Characteristics of Organic Wastewater Degradation on Hydrogen Fermentation (수소발효의 유기성 폐수 분해 특성)

  • 이영준
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.2
    • /
    • pp.1-5
    • /
    • 2000
  • 연속형 혐기성처리 반응조에서 배양된 수소발생 슬러지를 이용하여 증온 조건에서 회분식 혐기성 처리방법으로 유기성 폐수로부터 전환되는 수소가스 및 대사산물들에 대한 연구를 수행하였다. 수소발생에 대한 기질로는 sucrose를 이용하였다. 처리과정에서 발생된 누적수소가스, 휘발성지방산(VFAs) 및 solvents는 Gompertz equation을 이용한 비선형회귀분석을 통하여 계산하였다. 처리과정 중 수소가스는 반응초기에 발생하였고, 발생된 가스내 수소가스가 차지하는 비율은 약 20%이었다. 반응 전과정에서 메탄가스는 발생하지 않았다. 비수소가스발생율은 sucrose 농도가 40 g/l일 때 0.956 ml/g VSs/h이었으며, sucrose 농도가 300g/l의 경우는 0.011 ml/g VSS/h이었다. 수소가 발생하는 기간 동안 VFAs의 생성은 acetate, butyrate의 순으로 높게 생성되었으나, propionate로의 전환은 발견되지 않았다. solvents의 경우 butanol이 가장 높게 발생하였다.

  • PDF

1,3-Propanediol Fermentation using the by-Products from Fat Industry (글리세롤을 함유한 유지산업 부산물의 1,3-propanediol 발효)

  • 김철호;김승환;김세정;박건규;이상기
    • KSBB Journal
    • /
    • v.17 no.3
    • /
    • pp.255-260
    • /
    • 2002
  • 1,3-Propanediol as a bifunctional organic compound could be used in polymerization reactions producing polyesters and polyurethanes. Byproduct containing high concentration of glycerol from fat industry was used to produce 1,3-propanediol in lower production cost as well as waste treatment. In this study, various attempts were made to increase 1,3-propanediol production under different conditions using Klebsiella pneumoniae ATCC 15380. The conversion yield and byproduct formation were influenced significantly by the fermentation pH and temperature. The optimal glycerol and nitrogen concentration for 1,3-propanediol production were found to be 25 a/L and 1%(w/v), respectively. The formation of 1,3-propanediol was optimal at pH 6.0 and temperature $35^{\circ}C$. 1,3-Propanediol production from byproduct from 2.5% glycerol was lower than that of 2.5% commercial glycerol and amounted only to 9.84 a/L from byproduct, while to 12.13 a/L from commercial glycerol.

Production of Methane from Anaerobic Fermentation of Marine Macro-algae (해조류의 혐기성 발효를 이용한 메탄 생산)

  • Kim, Jeong-Min;Lee, Yeung-Ho;Jung, Sung-Hoon;Lee, Jin-Tae;Cho, Moo-Hwan
    • Clean Technology
    • /
    • v.16 no.1
    • /
    • pp.51-58
    • /
    • 2010
  • Methane was produced from the anaerobic digestion of marine macro-algae. Elemental analysis was first performed to estimate the theoretical methane production of three macro-algae (Undaria pinnatifida, Laminaria japonica, Hizikia fusiformis). Three algae were found to contain C 34 ~ 36%, H 5%, O 37 ~ 43%, N 2 ~ 4%, S 0.4 ~ 0.7%, and ash 14~21%, and the theoretical methane content was in the range of 56 ~ 60%, which can produce 442 ~ 568 mL $CH_4$ per g of volatile solid (VS). Using the biological methane potential (BMP) test, we found that L. japonica resulted in the highest yield of methane (52%). Moreover, various operational conditions, such as algae amount, pH, salinity, particle size, and pre-treatment, were investigated in order to find an optimal condition of anaerobic digestion. At pH 8.0, the autoclaved L. japonica (5g VS/200 mL), when used without washing salt, produced 268.5 mL/g VS which is 65% of the theoretical methane productions. Furthermore, using a CSTR (with the working volume of 7 L out of the total volume of 10 L), we have successfully operated the reactor for 65 days and obtained maximum methane production rate of 1.4 L/day with purity of 70%.

Study on Feasibility of Integrated Two-Phase Anaerobic Digestion Using Foodwaste Water by Reviewing of Operating Efficiency (일체형 2상 혐기성소화 운전효율 검토를 통한 음폐수 처리 타당성에 관한 연구)

  • Song, Hancheul;Kim, Dongwook
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.2
    • /
    • pp.59-66
    • /
    • 2016
  • The purpose of this study was to review of technical, economical feasibilities regarding Integrated Two-Phase Anaerobic Digestion(ITPAD) method. In order for that, operation conditions and data with 24tpd capacity of operating ITPAD plant were analyzed. The result showed that VS removal efficiency was 73.7% and total amount of biogas was generated $1,239m^3/day$ on the average that represents $54.4m^3/ton$-input of generation efficiency. ITPAD had advantages in terms of required area and energy for heating which were analyzed 15.9%~47%, 11.6%~17.8% lower respectively compared to Conventional Separated Two-Phase Anaerobic Digestion(CSTPAD) method. Thus, it is considered the ITPAD has comparatively high feasibility to be expanded and commercialized to dispose high concentration organic matter of waste such as food waste and its leachate.

High Efficiency Process Development for Methane Production by Anaerobic Fermentation (혐기성 발효에 의한 고효율 메탄 제조 공정 개발)

  • 선용호;황경엽
    • KSBB Journal
    • /
    • v.6 no.2
    • /
    • pp.129-133
    • /
    • 1991
  • This study is to investigate the kinetics of anaerobic process, the effect of mass transfer on process, and the characteristics of the conventional anaerobic bioreactor, and develop new high efficiency bioreactor. In the new bioreactor wastewater containing highly concentrated organic materials, was treated without diluting wastewater. In this experiment the high COD removal rate (about 88%) and gas production(about 200l/d) was showed with short residence time(1.5 day). This performance is about 10 times as large as the conventional reactor.

  • PDF