• Title/Summary/Keyword: 혐기성 미생물

Search Result 382, Processing Time 0.028 seconds

Isolation of Anaerobic Bacteria from Oral Pyogenic Infections (구강 화농성 감염에서 혐기성 세균의 배양분리)

  • 장복실;이장희;최화석;최선진
    • Korean Journal of Microbiology
    • /
    • v.23 no.1
    • /
    • pp.43-48
    • /
    • 1985
  • Strict anaerobic procedures and anaerobic chamber were employed in order to improve the isolation of obligate anaerobes from oral pyogenic infections. Also different culture media were utilized to maximize bacterial recovery. Two blood media: nalidixic acid Tween blood agar (NATB) and plain blood agar (BA), two non-blood media: nalidixic acid Tween agar (NAT) and Gifu anaerobic medium (GAM) were used and compared for their isolation efficacy. Specimens from seven patients were collected with syringe. After collection, the needle was sealed with sterilixed silicone rubber and brought to labortory. The time spent from specimen collection to its processing in anaerobic chamber usually was 15 min. Identification of isolated bacterial strains was done with the API-20A system. Increase in isolation of anaerobic vacteria was achieved. Obligate anaerobic bacteria isolated were 3.3 strains per specimen. This figure falls within the range of 1.9-4.4 strains per specimen reported in other countries. With respect to the media utilized, blood media were superior to non-blood media. NATB medium was effective especially for the isolation of Gram-positive cocci. A total of 15 species of Gram-negative rods was isolated and 12 of them belonged to Bacteroides.

  • PDF

항생물질을 생산하는 혐기성 세균의 탐색

  • 정은영;김병홍
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.5
    • /
    • pp.636-639
    • /
    • 1996
  • To develop new biologically active compounds produced by anaerobes, 677 soil samples were collected and used to isolate 1, 889 anaerobic bacteria. Among the isolates 427 strains were strict anaerobes and the remaining 1, 462 strains were facultative anaerobes. From 427 strictly anaerobic isolates, 88 strains showed antibacterial activities, and 21 strains were selected for the further studies.

  • PDF

Analysis of Microbial Community during the Anaerobic Dechlorination of PCE/TCE by DGGE (DGGE를 이용한 PCE 및 TCE의 혐기적 탈염소화 군집의 미생물 군집분석)

  • Kim, Byung-Hyuk;Cho, Dae-Hyun;Sung, Youl-Boong;Ahn, Chi-Youg;Yoon, Byung-Dae;Koh, Sung-Cheol;Oh, Hee-Mock;Kim, Hee-Sik
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.4
    • /
    • pp.448-454
    • /
    • 2010
  • This study investigated the effect of PCE and TCE as electron acceptors on the bacterial composition of dechlorinating communities. The enrichment cultures reductively dechlorinating PCE and TCE were developed from three environment samples using acetate as electron donor. The cultures were prepared by sequential enrichment, which was seeded with sediment and dredged soil. Denatured gradient gel electrophresis (DGGE) of 16S rRNA gene fragment was used to compare the microbial communities of these three enrichment cultures. After incubation for 4 weeks, the removal efficiencies of PCE and TCE were highest from Yeocheon site (87.37% and 84.46%, respectively). PCE and TCE as electron acceptors affected the bacterial diversity and community profiles in the enrichment cultures. DGGE analysis showed that the dominant bacteria in PCE and TCE enrichment were belonged to Clostridium sp., Desulfotomaculum sp., and uncultured bacteria.

Microbial Diversity in Three-Stage Methane Production Process Using Food Waste (음식물 쓰레기를 이용한 3단계 메탄생산 공정의 미생물 다양성)

  • Nam, Ji-Hyun;Kim, Si-Wouk;Lee, Dong-Hun
    • Korean Journal of Microbiology
    • /
    • v.48 no.2
    • /
    • pp.125-133
    • /
    • 2012
  • Anaerobic digestion is an alternative method to digest food wastes and to produce methane that can be used as a renewable energy source. We investigated bacterial and archaeal community structures in a three-stage methane production process using food wastes with concomitant wastewater treatment. The three-stage methane process is composed of semianaerobic hydrolysis/acidogenic, anaerobic acidogenic, and strictly anaerobic methane production steps in which food wastes are converted methane and carbon dioxide. The microbial diversity was determined by the nucleotide sequences of 16S rRNA gene library and quantitative real-time PCR. The major eubacterial population of the three-stage methane process was belonging to VFA-oxidizing bacteria. The archaeal community consisted mainly of two species of hydrogenotrophic methanogen (Methanoculleus). Family Picrophilaceae (Order Thermoplasmatales) was also observed as a minor population. The predominance of hydrogenotrophic methanogen suggests that the main degradation pathway of this process is different from the classical methane production systems that have the pathway based on acetogenesis. The domination of hydrogenotrophic methanogen (Methanoculleus) may be caused by mesophilic digestion, neutral pH, high concentration of ammonia, short HRT, and interaction with VFA-oxidizing bacteria (Tepidanaerobacter etc.).

Effect of Substrates on the Microbial Communities in a Microbial Electrolysis Cell and Anaerobic Digestion Coupled System (기질에 따른 미생물 전해 전지-혐기성 소화의 미생물 군집 특성)

  • LEE, CHAE-YOUNG;HAN, SUN-KEE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.3
    • /
    • pp.269-275
    • /
    • 2019
  • This study was conducted to evaluate the microbial communities in coupled system of a microbial electrolysis cell and an anaerobic digestion. Glucose, butyric acid, propionic acid and acetic acid were used as substrates. The maximum methane production and methane production rate of propionic acid respectively were $327.9{\pm}6.7mL\;CH_4/g\;COD$ and $28.3{\pm}3.1mL\;CH_4/g\;COD{\cdot}d$, which were higher than others. Microbial communities' analyses indicated that acetoclastic methangens were predominant in all systems. But the proportion of hydrogenotrophic methanogens was higher in the system using propionic acid as a substrate when compared to others. In coupled system of a microbial electrolysis cell and anaerobic digestion, the methane production was higher as the distribution of hydrogen, which was generated by substrate degradation, and proportion of hydrogenotrophic methanogens was higher.

Pilot-scale Study for Pulse Power Pretreatment of Waste Activated Sludge (Pulse Power를 이용한 폐활성슬러지 전처리의 파이럿 규모 연구)

  • Yoo, Hee Chan;Hong, Seung Mo;Choi, Han Na
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.13 no.3
    • /
    • pp.71-81
    • /
    • 2005
  • Anaerobic digestion is employed worldwide as the oldest and most important process for sludge stabilization. An additional advantage is the production of methane during anaerobic digestion. However, the waste activated sludge(WAS) has poor anaerobic degradability and less gas production due to the cell wall of bio-solid. In order to improve and enhance stabilization and dewatering of the WAS, a number of pretreatment processes have been developed and investigated. In this research, a pilot-scale study of pulse power pretreatment was performed to improve anaerobic degradability and dewaterability of the WAS. A pilot plant was designed and operated based on a previous laboratory study. Change of the sludge characteristics by pulse power pretreatment was estimated to assess the increasing soluble organics. The increased soluble organics could be used as a good substrate in the anaerobic digesion process. Gas production and methane potential of the anaerobic digestion were estimated as the parameters of anaerobic degradability. For evaluation of the dewaterability of pretreated WAS, capillary suction time(CST) and specific resistance were measured. The efficiency of energy recovery was also estimated by calculating energy balance.

  • PDF

Determination of the Optimum NH$_3$-N/NO$_2$-N Ratio by Anaerobic Batch Test in Anaerobic Ammonium Oxidation Process (혐기성 암모늄 산화공정에서 혐기성 회분식 실험에 의한 NH$_3$-N/NO$_2$-N의 최적비 산정)

  • Lee, Hwan-Hee;Kim, I-Jung;Jung, Jin-Young;Kim, Jee-Hyung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.7
    • /
    • pp.700-704
    • /
    • 2008
  • Nitrite and free ammonia have been known as substrate inhibitors in anaerobic ammonium oxidation. To reduce inhibitory effect of these substrates, the NH$_3$-N/NO$_2$-N ratio in the influent could be properly controlled in anaerobic ammonium oxidation process. Five kinds of NH$_3$-N/NO$_2$-N ratio were assayed in batch to find optimum NH$_3$-N/NO$_2$-N ratio, curtailing substrate inhibition. As the results of batch test, the highest T-N removal efficiency of 88% was obtained at 1.00 : 1.30 of NH$_3$-N/NO$_2$-N ratio. In addition, rate constants for ammonium and nitrite in zero-order kinetics were found to be the highest values as 7.66 mg/L$\cdot$hr and 11.89 mg/L$\cdot$hr at 1.00 : 1.30 ratio, respectively. However, as for the specific anammox activity, the ratio of NH$_3$-N/NO$_2$-N ratio was recommended as 1 : 1.15 which can maintain the highest SAA during continuous operation and preclude the accumulation of nitrite in the reactor.

육포 원료 우육의 미생물 분포 및 병원성 미생물의 분리

  • Kim, Hyeon-Uk;Kim, Tae-Im;Kim, Hye-Jeong;Nam, Gi-Jin;Kim, Cheon-Je;Baek, Hyeon-Dong
    • Proceedings of the Korean Society for Food Science of Animal Resources Conference
    • /
    • 2005.05a
    • /
    • pp.203-206
    • /
    • 2005
  • 시중의 정육점 및 백화점 등에서 유통 중인 10종의 우육 원료에 대한 일반 세균수, 저온균수, 고온균, 혐기성균 및 진균류, 대장균군에 대한 미생물학적 분포와 병원성 미생물에 대한분리${\cdot}$동정을 실시하였다. 실험결과 원료 우육에서 중온균은 $3.8{\times}\;10^3{\sim}1.4{\times}\;10^5\;cfu/g$으로 높은 분포를 보였다. 저온균은 $9.2{\times}\;10^3{\sim}1.0{\times}\;10^5\;cfu/g$으로 지표세균 중에서 가장 높은 분포를 나타내었고, 혐기성균은 중온균, 저온균과 유사한 분포를 보였으나 상대적으로 적게 검출되었고, 고온균은 모든 검체에서 검출되지 않았다. 대장균군 또한 모든 시료에 대해서 검출되지 않았다. 효모와 곰팡이류는 $2.2{\times}\;10^1{\sim}7.8{\times}\;10^2\;cfu/g$으로 검출되었다. 병원성 미생물은 우육 sample B, G, H에서 B. cereus 만이 검출되었고, 동정결과 99.8%의 상동성을 보였다.

  • PDF

Effects of Carbohydrate, Protein and Lipid Content of Substrate on Hydrogen Production and Microbial Communities (탄수화물, 단백질, 지방 함량에 따른 혐기성 수소 발효시 부산물 및 미생물 군집 특성 평가)

  • LEE, CHAE-YOUNG;HAN, SUN-KEE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.5
    • /
    • pp.440-446
    • /
    • 2017
  • This study was aimed at evaluating the effects of carbohydrate, protein and lipid content of substrate on hydrogen yields and microbial communities. The hydrogen yields were linearly correlated to carbohydrate content of substrates while others (content of proteins and lipids) did not make a significant contribution. The chemical composition of substrates produced effects on the final products of anaerobic hydrogen fermentation. Acetate and butyrate were the main fermentation products, with their concentration proving to correlate with carbohydrate and protein content of substrates. The result of microbial community analysis revealed that the relative abundances of Clostridium butyricum increased and Clostridium perfringens decreased as the carbohydrate content increased.

Study on maximization and demonstration of biogas production in an anaerobic digester using a microbial agent (미생물제재를 이용한 혐기성소화조 바이오가스 생산 극대화와 실증화에 관한 연구)

  • Bae, Sang-Dae
    • The Journal of the Convergence on Culture Technology
    • /
    • v.4 no.2
    • /
    • pp.179-183
    • /
    • 2018
  • Recently, several studies have been conducted on biogas and organic compost production using food waste in an anaerobic digester. In this study, basic experiments were conducted to produce biogas and compost by fermenting food wastes with microbial agents. First, a microbial agent was developed by combining various microorganisms. Then, the amount of generated biogas was identified through a food waste batch experiment. Further, we could maximize and demonstrate biogas production in an anaerobic digester by examining biogas production and composting in a pilot plant.