Analysis of Microbial Community during the Anaerobic Dechlorination of PCE/TCE by DGGE

DGGE를 이용한 PCE 및 TCE의 혐기적 탈염소화 군집의 미생물 군집분석

  • 김병혁 (한국생명공학연구원 환경바이오연구센터) ;
  • 조대현 (한국생명공학연구원 환경바이오연구센터) ;
  • 성열붕 (포항산업과학연구원 광양환경연구실) ;
  • 안치용 (한국생명공학연구원 환경바이오연구센터) ;
  • 윤병대 (한국생명공학연구원 전북분원 생물산업공정센터) ;
  • 고성철 (한국해양대학교 환경공학과) ;
  • 오희목 (한국생명공학연구원 환경바이오연구센터) ;
  • 김희식 (한국생명공학연구원 환경바이오연구센터)
  • Received : 2010.09.17
  • Accepted : 2010.11.28
  • Published : 2010.12.28

Abstract

This study investigated the effect of PCE and TCE as electron acceptors on the bacterial composition of dechlorinating communities. The enrichment cultures reductively dechlorinating PCE and TCE were developed from three environment samples using acetate as electron donor. The cultures were prepared by sequential enrichment, which was seeded with sediment and dredged soil. Denatured gradient gel electrophresis (DGGE) of 16S rRNA gene fragment was used to compare the microbial communities of these three enrichment cultures. After incubation for 4 weeks, the removal efficiencies of PCE and TCE were highest from Yeocheon site (87.37% and 84.46%, respectively). PCE and TCE as electron acceptors affected the bacterial diversity and community profiles in the enrichment cultures. DGGE analysis showed that the dominant bacteria in PCE and TCE enrichment were belonged to Clostridium sp., Desulfotomaculum sp., and uncultured bacteria.

광양, 하남, 여천지역의 토양, 하천 및 해양 퇴적물 등을 이용하여, 난분해성 염소화합물인 PCE (perchloroethylene) 및 TCE(trichloroethylene)의 혐기성 탈염소화에 관련하는 미생물을 탐색하고 이들의 탈염소화 효율을 조사하였다. 혐기성 상호대사에 의한 탈염소화 효율을 조사하기위해 전자 공여체로 아세테이트를 사용하여 혐기성 회분식 실험을 실시 하였으며, 미생물 군집을 분석하기 위해, 분자생물학적인 기법인 16S rDNA의 DGGE 기법을 이용하였다. 그 결과, 4주간 집적배양을 통해 광양, 하남, 여천시료는 PCE와 TCE를 PCE 75% 이상, TCE 81% 이상 탈염소화하는 것으로 나타내며, 여천시료가 우수한 PCE/TCE탈염소화율을 보이고 있다(PCE 87.37%, TCE 84.46%). 또한, 전자 수용체에 따른 탈염소화 배양액의 미생물 다양성은 DGGE로 분석하였으며, 우점하는 미생물은 Clostridium sp., Desulfotomaculum sp.와 unculutured bacteria로 나타났다.

Keywords

References

  1. 환경법 2장, 환경보전 11조. 먹는물 수질 기준 및 검사기준등에 관한 규칙.
  2. DeWeerd, K. A., W. P. Fianagan, M. J. Brennan, J. M. Principe, and J. L. Spivack. 1998. Biodegradation of trichloroethylene and dichloromethane in contaminated soil and groundwater. Bioremed. J. 2: 29-42. https://doi.org/10.1080/10889869891214196
  3. Drzyzga, O., J. Gerritse, J. A. Dijk, H. Elissen, and J. C. Gottschal. 2001. Coexistence of a sulphate-reducing Desulfovibrio species and the dehalorespiring Desulfitobacterium frappieri TCE1 in defined chemostat cultures grown with various combinations of sulphate and tetrachloroethene. Environ. Microbiol. 3: 92-99. https://doi.org/10.1046/j.1462-2920.2001.00157.x
  4. Gonzalez, J. M., A. Ortiz-Martinez, M. A. GonzalezdelValle, L. Laiz, and C. Saiz-Jimenez. 2003. An efficient strategy for screening large cloned libraries of amplified 16S rDNA sequences from complex environmental communities. J. Microbiol. Methods 55: 459-463. https://doi.org/10.1016/S0167-7012(03)00171-4
  5. Gu, A. Z., B. P. Hedlund, J. T. Staley, S. E. Strand, and H. D. Stensel. 2004. Analysis and comparison of the microbial community structures of two enrichment cultures capable of reductively dechlorinating TCE and cis-DCE. Environ. Microbiol. 6: 45-54.
  6. He, J., Y. Sung, R. Krajmalnik-Brown, K. M. Ritalahti, and F. E. Löffler. 2005. Isolation and characterization of Dehalococcoides sp. strain FL2, a trichloroethene (TCE)- and 1,2- dichloroethene-respiring anaerobe. Environ. Microbiol. 7: 1442-1450. https://doi.org/10.1111/j.1462-2920.2005.00830.x
  7. Holliger, C. 1995. The anaerobic microbiology and biotreatment of chlorinated ethenes. Curr. Opin. Biotechnol. 6: 347-351. https://doi.org/10.1016/0958-1669(95)80058-1
  8. Ishii, K., and M. Fukui. 2001. Optimization of annealing temperature to reduce bias caused by a primer mismatch in multitemplate PCR. Appl. Environ. Microbiol. 67: 3753-3755. https://doi.org/10.1128/AEM.67.8.3753-3755.2001
  9. Jain, M. K., and J. G. Zeikus. 1989. Bioconversion of gelatin to methane by a coculture of Clostridium collagenovorans and Methanosarcina. Appl. Environ. Microbiol. 55: 366-371.
  10. Jaspers, E., K. Nauhaus, H. Cypionka, and J. Overmann. 2001. Multitude and temporal variability of ecological niches as indicated by the diversity of cultivated bacterioplankton. FEMS Microbiol. Ecol. 36: 153-169. https://doi.org/10.1111/j.1574-6941.2001.tb00835.x
  11. Kim, B.-H., K.-H. Baek, D.-H. Cho, Y. Sung, C.-Y. Ahn, H.- M. Oh, S.-C. Koh, and H.-S. Kim. 2009. Analysis of microbial community during the anaerobic dechlorination of tetrachloroethylene (PCE) in stream of Gimpo and Inchon areas. Kor. J. Microbiol. 45: 140-147.
  12. Koizumi, Y., H. Kojima, and M. Fukui. 2003. Characterization of depth-related microbial community structure in lake sediment by denaturing gradient gel electrophoresis of amplified 16S rDNA and reversely transcribed 16S rRNA fragments. FEMS Microbiol. Ecol. 46: 147-157. https://doi.org/10.1016/S0168-6496(03)00212-5
  13. Lee, J.-W., B.-H. Kim, C.-Y. Ahn, H.-S. Kim, B.-D. Yoon, and H.-M. Oh. 2005. Analysis of microbial community during the anaerobic dechlorination of perchloroethylene and trichloroethylene. Kor. J. Microbiol. 41: 281-286.
  14. Maymo-Gatell, X., Y.-t. Chien, J. M. Gossett, and S. H. Zinder. 1997. Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science 276: 1568-1571. https://doi.org/10.1126/science.276.5318.1568
  15. Muyzer, G. 1999. DGGE/TGGE a method for identifying genes from natural ecosystems. Curr. Opin. Microbiol. 2: 317-322. https://doi.org/10.1016/S1369-5274(99)80055-1
  16. Muyzer, G., E. C. de-Waal, and A. G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59: 695-700.
  17. Semprini, L. 1997. Strategies for the aerobic co-metabolism of chlorinated solvents. Curr. Opin. Biotechnol. 8: 296-308. https://doi.org/10.1016/S0958-1669(97)80007-9
  18. Sung, Y., K. E. Fletcher, K. M. Ritalahti, R. P. Apkarian, N. Ramos-Hernandez, R. A. Sanford, N. M. Mesbah, and F. E. Loffler. 2006. Geobacter lovleyi sp. nov. strain SZ, a novel metal-reducing and tetrachloroethene-dechlorinating bacterium. Appl. Environ. Microbiol. 72: 2775-2782. https://doi.org/10.1128/AEM.72.4.2775-2782.2006
  19. Sung, Y., K. Ritalahti, R. Sanford, J. Urbance, S. Flynn, J. M. Tiedje, and F. E. Löffler. 2003. Characterization of two tetrachloroethene-reducing, acetate-oxdizing anaerobic bacteria and their description as Desulfuromonas michiganensis sp. nov. Appl. Environ. Microbiol. 69: 2964-2974. https://doi.org/10.1128/AEM.69.5.2964-2974.2003
  20. Vogel, T. M., C. S. Criddle, and P. L. McCarty. 1987. Transformations of halogenated aliphatic compounds. Environ. Sci. Technol. 21: 722-736. https://doi.org/10.1021/es00162a001
  21. Waber, L. J., and H. G. Wood. 1979. Mechanism of acetate synthesis from $CO_{2}$ by Clostridium acidiurici. J. Bacteriol. 140: 468-478.
  22. Yang, Y., and P. L. McCarty. 1998. Competition for hydrogen within a chlorinated solvent dehalogenating anaerobic mixed culture. Environ. Sci. Technol. 32: 3591-3597. https://doi.org/10.1021/es980363n