Browse > Article
http://dx.doi.org/10.7316/KHNES.2019.30.3.269

Effect of Substrates on the Microbial Communities in a Microbial Electrolysis Cell and Anaerobic Digestion Coupled System  

LEE, CHAE-YOUNG (Department of Civil Eng. and Institute of River Environmental Technology, The University of Suwon)
HAN, SUN-KEE (Department of Environmental Health, Korea National Open University)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.30, no.3, 2019 , pp. 269-275 More about this Journal
Abstract
This study was conducted to evaluate the microbial communities in coupled system of a microbial electrolysis cell and an anaerobic digestion. Glucose, butyric acid, propionic acid and acetic acid were used as substrates. The maximum methane production and methane production rate of propionic acid respectively were $327.9{\pm}6.7mL\;CH_4/g\;COD$ and $28.3{\pm}3.1mL\;CH_4/g\;COD{\cdot}d$, which were higher than others. Microbial communities' analyses indicated that acetoclastic methangens were predominant in all systems. But the proportion of hydrogenotrophic methanogens was higher in the system using propionic acid as a substrate when compared to others. In coupled system of a microbial electrolysis cell and anaerobic digestion, the methane production was higher as the distribution of hydrogen, which was generated by substrate degradation, and proportion of hydrogenotrophic methanogens was higher.
Keywords
Microbial electrolysis cell; Anaerobic digestion; Substrate; Microbial communities; Hydrogenotrophic methanogens;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 L, Appels, J. Baeyens, J. Degreve, and R. Dewil, "Principles and potential of the anaerobic digestion of waste-activated sludge", Prog. Energy and Combust. Sci., Vol. 38, No. 6, 2008, pp. 755-781, doi: https://doi.org/10.1016/j.pecs.2008.06.002.
2 Y. Dang, D. E. Holmes, Z. Zhao, T. L. Woodard, Y. Zhang, D. Sun, L. Y. Wang, K. P. Nevin, and D. R. Lovely, "Enhancing anaerobic digestion of complex organic waste with carbon based conductive materials", Bioresour. Technol., Vol. 220, 2016, pp. 516-522, doi: https://doi.org/10.1016/j.biortech.2016.08.114.   DOI
3 H. Carrere, C. Dumas, A. Battimelli, D. J. Bastone, J. P. Delgenes, J. P. Steyer, and I. Ferrer, "Pretreatment methods to improve sludge anaerobic degradability: A review", J. Hazard. Mater., Vol. 183, No. 1-3, 2010, pp. 1-15, doi: https://doi.org/10.1016/j.jhazmat.2010.06.129.   DOI
4 Y. Zhang and I. Angelidaki, "Microbial electrolysis cells turning to be versatile to be versatile technology: Recent advances and future challenges", Water Res., Vol. 56, 2014, pp. 11-25, doi: https://doi.org/10.1016/j.watres.2014.02.031.   DOI
5 B. E. Logan, D. Call, S. Cheng, H. V. M. Hamelers, T. H. J. A. Sleutels, A. W. Jeremiase, and R. A. Rozendal, "Microbial electrolysis cells for high yield hydrogen gas production from orgnaic matter", Environ. Sci. Technol., Vol. 42, No. 23, 2008, pp. 8630-8640, doi: https://doi.org/10.1021/es801553z.   DOI
6 R. A. Rozendal, H. V. M. Hamelers, G. J. W. Euverink, S. J. Metz, and C. J. N. Buisman, "Priciples and perspectives of hydrogen production through biocatalyzed electrolysis", Int. J. Hydrogen Energy, Vol. 31, No. 12, 2006, pp. 1632-1640, doi: https://doi.org/10.1016/j.ijhydene.2005.12.006.   DOI
7 S. Gajaraj, Y. Huang, P. Zheng, and Z. Hu, "Methane production improvement and associated methanogenic assemblages in bioelectrochemically assisted anaerobic digestion", Biochem. Eng., Vol. 117, 2017, pp. 105-112, doi: https://doi.org/10.1016/j.bej.2016.11.003.   DOI
8 Y. Feng, Y. Zhang, S. Chen, and X. Quan, "Enhanced production of methane from waste activated sludge by the combination of high-solid anaerobic digestion and microbial electrolysis cell with iron-graphite electrode", Chem. Eng. J., Vol. 259, 2015, pp. 787-794, doi: https://doi.org/10.1016/j.cej.2014.08.048.   DOI
9 Z. Guo, W. Liu, C. Yang, L, Gao, S. Thangvel, L. Wang, Z. He, W. Cai, and A. Wang, "Computational and experimental analysis of orgnaic degrdation positively regulated by bioelectrochemistry in an anaerobic bioreactor system", Water Res., Vol. 125, 2017, pp. 170-179, doi: https://doi.org/10.1016/j.watres.2017.08.039.   DOI
10 Y. Li, Y. Zhang, Y. Liu, Z. Zhao, Z. Zhao, S. Liu, H. Zhao, and X. Quan, "Enhancement of anaerobic methanogenesis at a short hydraulic retention time via bioelectrochemical e nrichment of hydrogenotrophic methanogens", Bioresour. Technol., Vol. 218, 2016, pp. 505-511, doi: https://doi.org/10.1016/j.biortech.2016.06.112.   DOI
11 J. Park, B. Lee, D. Tian, and H. Jun, "Bioelectrochemical enhancement of methane production from highly concentrated food waste in a combined anaerobic digester and microbial electrolysis cell", Bioresour. Technol., Vol. 247, 2018, pp. 226-233, doi: https://doi.org/10.1016/j.biortech.2017.09.021.   DOI
12 American Public Health Association (APHA), "Standard Methods for the examination of waster and wastewater", APHA, USA, 2005.
13 B. Lee, J. G. Park, W. B. Shin, D. J. Tian, and H. B. Jun, "Microbial communities change in an anaerobic digestion after application of microbial electrolysis cells", Bioresour. Technol., Vol. 234, 2017, pp. 273-280, doi: https://doi.org/10.1016/j.biortech.2017.02.022.   DOI
14 Y. Gao, D. Sun, Y. Dang, Y. Lei, J. Ji, T. Lv, R. Bian, Z. Xiao, L. Yan, and D. E. Holmes, "Enhancing biomethanogenic treatment of fresh incineration leachate using single chamvered microbial electrolysis cells", Bioresour. Technol., Vol. 231, 2017, pp. 129-137, doi: https://doi.org/10.1016/j.biortech.2017.02.024.   DOI
15 Z. Zhao, Y. Zhang, X. Quan, and H. Zhao, "Evaluation on direct interspecies electro transfer in anaerobic sludge digestion of microbial electrolysis cell", Bioresour. Technol., Vol. 200, 2016, pp. 235-244, doi: https://doi.org/10.1016/j.biortech.2015.10.021.   DOI
16 Q. Liu, Z. J. Ren, C. Huang, B. Liu, N. Ren, and D. Xing, "Multiple syntrophic interactions drive biohythane production from waste sludge in microbial electrolysis cells", Biotechnol. Biofuels, Vol. 9, No. 1, p. 162, doi: https://doi.org/10.1186/s13068-016-0579-x.
17 S. K. Han and C. Y. Lee, "Evaluation of power density in microbial fuel cells using expanded graphite/carbon nanotube (CNT) composite cathode and CNT anode", Journal of Korean Society of Water & Wastewater, Vol. 27, No. 4, 2013, pp. 503-509, doi: https://doi.org/10.11001/jksww.2013.27.4.503.   DOI
18 S. K. Khanl, "Anaerobic biotechnology for bioenergy production: Priciples and Applications", Wiley-Balckwell, USA, 2008.
19 A. E. Schauer-Gimenez, D. H. Ziomer, J. S. Maki, and C. A. Struble, "Bioaugmentation for improved recovery of anaerobic digesters after toxicant exposure", Water Res., Vol. 44, No. 12, 2010, pp. 3555-3564, doi: https://doi.org/10.1016/j.watres.2010.03.037.   DOI
20 T. Bo, Z. Zhu, L. Zhang, Y. Tao, X. He, D. Li, and Z. Yan, "A new upgraded biogas production process: coupling microbial electrolysis cell and anaerobic digestion in single-chamber, barrel-shape stainless steel reactor", Vol. 45, 2014, pp. 67-70, doi: https://doi.org/10.1016/j.elecom.2014.05.026.   DOI