• Title/Summary/Keyword: 혈관신생억제

Search Result 104, Processing Time 0.024 seconds

Emodin from Polygonum cuspidatum showed Angiogenesis Inhibiting Activity in vitro (호장근으로부터 분리된 emodin의 혈관신생 억제 활성)

  • Lee, Tae-Kyoo;Kim, Jong-Hwa;So, June-No
    • Applied Biological Chemistry
    • /
    • v.46 no.1
    • /
    • pp.50-54
    • /
    • 2003
  • Polygonum cuspidatum has been used as a fork medicine for a long time. Emodin was purified from the root of P. cuspidatum by thin layer chromatography (TLC) and preparative high perfomance liquid chromatography (HPLC). The effects of emodin on the migration of endothelial cells and in vitro angiogenesis stimulated with vascular endothelial cell growth factor (VEGF) were examined, using human umbilical vein endothelial cells (HUVECs) and porcine pulmonary arterial endothelial cells (PPAECs). Emodin potently inhibited the VEGF-induced migration of (HUVECs) at relatively low cocentrations $(0.1-10\;{\mu}g/ml)$; the inhibition of endothelial cells by emodin was 75.4% at $0.1\;{\mu}g/ml$ and about 90% at $1\;{\mu}g/ml$. Emodin also inhibited VEGF-induced sprout formation in vitro at concentrations of $0.1-10\;{\mu}g/ml$. Emodin was also evaluated for the inhibitory potential on in vivo angiogenesis in a growing chick embryo chorioallantoic membranes (CAM). At a concentration of $1.0\;{\mu}g/ml$ Per disc, emodin was able to induce avacular zone in the CAMs. These findings suggest that emodin is a potent angiogenesis inhibitor and P. cuspidatum is a useful herb in the development of therapeutics for angiogenesis dependent diseases.

Inhibitory Effect of Chloroform Extract of Marine Algae Hizikia Fusifomis on Angiogenesis (Hizikia fusiformis 클로로포름 추출물의 in vitro 및 in vivo 혈관신생 억제 연구)

  • Myeong-Eun Jegal;Yu-Seon Han;Shi-Young Park;Ji-Hyeok Lee;Eui-Yeun Yi;Yung-Jin Kim
    • Journal of Life Science
    • /
    • v.34 no.6
    • /
    • pp.399-407
    • /
    • 2024
  • Angiogenesis is the process by which new blood vessels form from existing blood vessels. This phenomenon occurs during growth, healing, and menstrual cycle changes. Angiogenesis is a complex and multifaceted process that is important for the continued growth of primary tumors, metastasis promotion, the support of metastatic tumors, and cancer progression. Impaired angiogenesis can lead to cancer, autoimmune diseases, rheumatoid arthritis, cardiovascular disease, and delayed wound healing. Currently, there are only a handful of effective antiangiogenic drugs. Recent studies have shown that natural marine products exhibit antiangiogenic effects. In a previous study, we reported that the hexane extract of H. fusiformis (HFH) could inhibit the development of new blood vessels both in vitro and in vivo. The aim of this study was to describe the inhibitory effect of chloroform extracts of H. fusiformis on angiogenesis. To investigate how chloroform extract prevents blood vessel growth, we examined its effects on HUVEC, including cell migration, invasion, and tube formation. In a mouse Matrigel plug assay, H. fusiformis chloroform extract (HFC) also inhibited angiogenesis in vivo. Certain proteins associated with blood vessel growth were reduced after HFC treatment. These proteins include vascular endothelial growth factor (VEGF), mitogen-activated protein kinase (MAPK)/extracellular signal transduction kinase, and serine/threonine kinase 1 (AKT). These studies have shown that the chloroform extract of H. fusiformis can inhibit blood vessel growth both in vitro and in vivo.

Antiangiogenic Effects of Gold Nanoparticles VEGF-induced Vascular Endothelial Cells (금 나노입자의 VEGF에 의해 유발된 혈관 내피세포의 신생혈관형성 억제 효과)

  • Choi, Seung-Hyun;Ryu, Geun-Chang;Kim, In-Suk;Chae, Soo-Chul
    • Korean Journal of Environmental Biology
    • /
    • v.28 no.1
    • /
    • pp.14-19
    • /
    • 2010
  • Angiogenesis is an important event involved in cell growth and wound healing process. However, the imbalance of growth factors causes diseases, such as ocular, inflammatory diseases. One of treatment of these diseases is to suppress the formation of blood vessels. Function and mechanism of gold nanoparticles (AuNPs) in the formation of blood vessels is not yet proved. Pigment epithelium derived factor (PEDF) is currently being offered anti-angiogenic materials. In this study, we postulated that AuNPs might have the ability to inhibit angiogenesis, the pivotal step in tumor growth, invasion and metastasis. We have demonstrated that AuNPs could inhibit vascular endothelial growth factor (VEGF) induced cell proliferation, angiogenesis in bovine retinal endothelial cells.

Hot-water Extract of Rubus Coreanus Miquel Suppresses VEGF-induced Angiogenesis (복분자 온수추출물의 VEGF-유도성 혈관신생 억제효과)

  • Kim, Eok-Cheon;Kim, Hye Jin;Kim, Tack-Joong
    • Journal of Life Science
    • /
    • v.24 no.12
    • /
    • pp.1345-1355
    • /
    • 2014
  • The interruption of angiogenesis using herbal extracts is now recognized as a useful approach for treating many solid tumors. To date, the best-validated antitumor approach is to target the vascular endothelial growth factor (VEGF)-induced angiogenic pathway. In the present study, we first identified the antiangiogenic activity of a hot-water extract of Rubus coreanus Miquel (RCMHE) in vitro and ex vivo. This extract suppressed VEGF-induced angiogenesis, the phosphorylation of extracellular regulated kinase (ERK), p38 and the activation of matrix metalloproteinases (MMPs). RCMHE also inhibited the VEGF-responsive phosphorylation of VEGFR2. These results clearly show that RCMHE may have potential therapeutic value for angiogenesis-associated human diseases through the suppression of angiogenesis and the interruption of the phosphorylation of VEGFR2.

Hot Water Extract of Scutellaria baicalensis Inhibits Migration, Invasion and Tube Formation in a Human Umbilical Vein Endothelial Cell Model and a Rat Aortic Ring Sprouting Model (혈관내피세포와 흰쥐 대동맥 미세혈관 발아 모델을 이용한 황금 열수추출물의 세포의 이동, 침투 및 관형성 억제 연구)

  • Kim, Eok-Cheon;Bae, Kiho;Kim, Han Sung;Yoo, Yeong-Min;Gelinsky, Michael;Kim, Tack-Joong
    • Journal of Life Science
    • /
    • v.26 no.1
    • /
    • pp.91-100
    • /
    • 2016
  • Angiogenesis is essential for the pathophysiological processes of embryogenesis, tissue growth, diabetic retinopathy, psoriasis, wound healing, rheumatoid arthritis, cardiovascular diseases, and tumor growth. Inhibition of angiogenesis represents an attractive therapeutic approach for the treatment of angiogenic diseases such as cancer. However, uncontrolled angiogenesis is also necessary for tumor development and metastasis. Inhibition of vascular endothelial growth factor (VEGF) signaling, a critical factor in the induction of angiogenesis, cause robust and rapid changes in blood vessels of tumors and therefore VEGF constitutes a target for such anti-angiogenic therapy. Recently, since natural compounds pose significantly less risk of deleterious side effects than synthetic compounds, a great many natural resources have been assessed for useful substance for anti-angiogenic treatment. Here we evaluated the anti-angiogenic effects of a hot water extract of Scutellaria baicalensis (SBHWE) using in vitro assays and ex vivo animal experiments. Our results show that SBHWE dose-dependently abrogated vascular endothelial responses by inhibiting VEGF-stimulated migration and invasion as well as tube formation in a human umbilical vein endothelial cell (HUVEC) model, without cytotoxicity, as determined by a cell viability assay. Further study revealed that SBHWE prevented VEGF-induced neo-vascularization in a rat aortic ring sprouting model. Taken together, our findings reveal an anti-angiogenic activity of Scutellaria baicalensis and suggest that SBHWE is a novel candidate inhibitor of VEGF-induced angiogenesis.

Effect of swimming exercise on anti-angiogenesis of white adipose tissue in high-fat diet-fed female ovariectomized mice (고지방식이를 섭취한 난소절제 암컷 쥐의 수영운동이 백색지방조직의 항혈관신생에 미치는 효과)

  • Jeong, Sun-Hyo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.385-397
    • /
    • 2020
  • This study investigated whether swimming exercises improves obesity through regulation of angiogenesis in white adipose tissue. Female mice with high-fat diets were divided into sham-operated group (Sham), ovariectomized group (OVX), and swim-trained ovariectomized group (OVX + Swim). Compared to the Sham, OVX increased body weight, adipose tissue mass and size of adipocyte. However, these factors (: such as body weight, adipose tissue mass and size of adipocyte) of OVX + Swim decreased compared with OVX. Compared with the Sham, OVX increased the mRNA expression of angiogenic activator and MMPs and decreased the mRNA expression of angiogenic inhibitors in white adipose tissue. But OVX + Swim decreased the mRNA expression of angiogenic activator and MMPs and increased the mRNA expression of angiogenic inhibitors in white adipose tissue, compared with the OVX. Theses results suggested that swimming exercises the angiogenesis in white adipose tissue, resulting to improve obesity in high-fat diet-fed female OVX mice.

Hizikia Fusiformis Hexane Extract Decreases Angiogenesis in Vitro and in Vivo (Hizikia fusiformis 추출물의 in vitro 및 in vivo에서 혈관신생 감소 연구)

  • Myeong-Eun Jegal;Yu-Seon Han;Shi-Yung Park;Ji-hyeok Lee;Eui-Yun Yi;Yung-Jin Kim
    • Journal of Life Science
    • /
    • v.33 no.9
    • /
    • pp.703-712
    • /
    • 2023
  • Angiogenesis, the formation of blood vessels from pre-existing vessels, is a multistep process regulated by modulators of angiogenesis. It is essential for various physiological processes, such as embryonic development, chronic inflammation, and wound repair. Dysregulation of angiogenesis causes many diseases, such as cancer, autoimmune diseases, rheumatoid arthritis, cardiovascular disease, and delayed wound healing. However, the number of effective anti-angiogenic drugs is limited. Recent research has focused on identifying potential drug candidates from natural sources. For example, marine natural products have been shown to have anti-cancer, anti-oxidant, anti-inflammatory, antiviral, and wound-healing effects. Thus, this study aimed to describe the angiogenesis inhibitory effect of Hizikia fusiforms (brown algae) extract. The hexane extract of H. fusiformis has shown inhibitory effects on in vitro angiogenesis assays, such as cell migration, invasion, and tube formation in human umbilical vein endothelial cells (HUVECs). The hexane extract of H. fusiformis (HFH) inhibited in vivo angiogenesis in a mouse Matrigel gel plug assay. In addition, the protein expression of vascular endothelial growth factor (VEGF), mitogen-activated protein kinase (MAPK)/extracellular signal kinase, and AKT serine/threonine kinase 1 decreased following treatment with H. fusiformis extracts. Our results demonstrated that the hexane extract of H. fusiformis (HFH) inhibits angiogenesis in vitro and in vivo.

Angiogenesis-inhibiting Effects of Prunus mume Butanol Fractions on Human Umbilical Vein Endothelial Cells (매실 부탄올 분획물에 의한 혈관 신생 억제 효과)

  • Min, Hye-Ji;Kim, Jeong-Ho;Heo, Ji-An;Won, Yeong-Seon;Seo, Kwon-Il
    • Journal of Life Science
    • /
    • v.31 no.1
    • /
    • pp.59-65
    • /
    • 2021
  • Prunus mume Sieb. et Zucc is distributed throughout Asia and has traditionally been used as medicine and food. P. mume is known to contain large amounts of various organic acids, minerals, and phenol components. To date, the trend of P. mume research has focused only on the effects of antioxidant, anticancer and antibacterial, with only a few studies have focused on angiogenesis. Angiogenesis is a common characteristic of metastatic cancer through which oxygen and nutrients are delivered to the cells and tissues. In the present study, angiogenesis-inhibiting activity was investigated by evaluating the total polyphenol and flavonoid contents of the P. mume butanol fraction (PBF) and their ability to inhibit VEGF-induced human umbilical vein endothelial cells (HUVECs) proliferation, migration, invasion, and capillary formation. The polyphenols (12.81 mg GAE/g) and flavonoids (28.4 mg QE/g) of the PBF exhibited high antioxidant activity. The results of this study showed that PBF did not inhibit the proliferation of HUVECs at concentrations of 25-200 ㎍/ml and did not exhibit toxicity to normal cells. However, PBF inhibited the VEGF-induced mobility, invasion, and capillary formation of HUVECs. These results show that PBF inhibits the angiogenesis of HUVECs induced by VEGF. Therefore, PBF could serve as a therapeutic agent for the inhibition of angiogenesis.

Effects of Cnidium officinale Makino and Tabanus bovinus in a CAM and Rat Corneal anti-angiogenesis (장요막과 흰쥐 각막에서의 신생혈관 억제를 위한 약재(Cnidium officinale Makino와 Tabanus bovinus) 효과 규명)

  • Han, Sun Hee;Kim, Dae Nyoun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.7 no.1
    • /
    • pp.39-43
    • /
    • 2002
  • This study was investigated the anti-angiogenic activities of Cnidium officinale Makino and Tabanus bovinus by using Chorioallantoic membrane (CAM) and rat cornea. First experiment, the fertilized chicken eggs were kept in a humidified egg incubator at $37^{\circ}C$. After 4 days incubation, about 3 ml of albumin was aspirated from eggs with an hypodermic needles through a small hole drilled at the narrow end of the eggs, and the shell membrane on the floor of the air sac was peeled away. Embryos with chorioallantois of 3~5 mm in diameter were employed for the assay of antiangiogenic activity. Retinoic acid was used as a positive control for this experiment. After 48 h of treatment. branching pattern of blood vessels below coverslip containing retinoic acid ($10{\mu}g/egg$) was dramatically decreased. A simiar angiogenic inhibition was observed in the CAM treated with $50{\mu}g/egg$ of Cnidium omcinale Makino and Tabanus bovinus extracts. Second experiment, rat corneal neovascularization was induced by suturing (one stitch) the cornea with 10-0 nylon, and terramycin was applied on the cornea for I week to prevent corneal inflammation. In the cornea of rats untreated with herbal extracts, numerous vessels were usually seen invading the cornea by day 2 or 3 after suture, and reaching the lesion area within 5~6 days. Corneal neovascularization was gradually increased and peaked at 3 weeks. In contrast to this, herbal extracts conspicuously inhibited the angiogenesis, Oral administration of herbal extracts (20 mg/kg body weight/day) for 4 weeks significantly inhibited the rat corneal angiogenesis induced by suture, and the length of blood vessels in herbal medicine-treated rat cornea was conspicuously lower than that in control animals. A similar phenomenon was also observed in the rat cornea treated with thalidomide (200 mg/kg body weight/day). These findings indicate the anti-angiogenic properties of Cnidium officinale Makino and Tabanus bovinus, suggesting that these properties may be one of the pharmacological mechanisms underlying the anti-tumor and anti-metastatic activities of herbal extracts tested in this study.

  • PDF

Antiangiogenic Activity of Coptis chinensis Franch. Water Extract in in vitro and ex vivo Angiogenesis Models (In vitro와 ex vivo 혈관신생 모델에서 황련 냉수추출물의 신생혈관 억제효과)

  • Kim, Eok-Cheon;Kim, Seo Ho;Lee, Jin-Ho;Kim, Tack-Joong
    • Journal of Life Science
    • /
    • v.27 no.1
    • /
    • pp.78-88
    • /
    • 2017
  • Angiogenesis, the formation of new blood vessels, plays an important role in tumor growth and metastasis; therefore, it has become an important target in cancer therapy. Novel anticancer pharmaceutical products that have relatively few side effects or are non-cytotoxic must be developed, and such products may be obtained from traditional herbal medicines. Coptis chinensis Franch. is an herb used in traditional medicine for the treatment of inflammatory diseases and diabetes. However, potential antiangiogenic effects of C. chinensis water extract (CCFWE) have not yet been studied. The purpose of this study was to determine the antiangiogenic effect of CCFWE in order to evaluate its potential for an anticancer drug. We found that the treatment with CCFWE inhibited the major steps of the angiogenesis process, such as the endothelial cell proliferation, migration, invasion, and capillary-like tube formation in response to vascular endothelial growth factor (VEGF), and also resulted in the growth inhibition of new blood vessels in an ex vivo rat aortic ring assay. We also observed that CCFWE treatment arrested the cell cycle at the G0/G1 phase, preventing the G0/G1 to S phase cell cycle progression in response to VEGF. In addition, the treatment reduced the VEGF-induced activation of matrix metalloproteinases 2 and 9. Taken together, these findings indicate that CCFWE should be considered a potential anticancer therapy against pathological conditions where angiogenesis is stimulated during tumor development.