Browse > Article
http://dx.doi.org/10.5352/JLS.2017.27.1.78

Antiangiogenic Activity of Coptis chinensis Franch. Water Extract in in vitro and ex vivo Angiogenesis Models  

Kim, Eok-Cheon (Division of Biological Science and Technology, College of Science and Technology, Yonsei University)
Kim, Seo Ho (Division of Biological Science and Technology, College of Science and Technology, Yonsei University)
Lee, Jin-Ho (Division of Biological Science and Technology, College of Science and Technology, Yonsei University)
Kim, Tack-Joong (Division of Biological Science and Technology, College of Science and Technology, Yonsei University)
Publication Information
Journal of Life Science / v.27, no.1, 2017 , pp. 78-88 More about this Journal
Abstract
Angiogenesis, the formation of new blood vessels, plays an important role in tumor growth and metastasis; therefore, it has become an important target in cancer therapy. Novel anticancer pharmaceutical products that have relatively few side effects or are non-cytotoxic must be developed, and such products may be obtained from traditional herbal medicines. Coptis chinensis Franch. is an herb used in traditional medicine for the treatment of inflammatory diseases and diabetes. However, potential antiangiogenic effects of C. chinensis water extract (CCFWE) have not yet been studied. The purpose of this study was to determine the antiangiogenic effect of CCFWE in order to evaluate its potential for an anticancer drug. We found that the treatment with CCFWE inhibited the major steps of the angiogenesis process, such as the endothelial cell proliferation, migration, invasion, and capillary-like tube formation in response to vascular endothelial growth factor (VEGF), and also resulted in the growth inhibition of new blood vessels in an ex vivo rat aortic ring assay. We also observed that CCFWE treatment arrested the cell cycle at the G0/G1 phase, preventing the G0/G1 to S phase cell cycle progression in response to VEGF. In addition, the treatment reduced the VEGF-induced activation of matrix metalloproteinases 2 and 9. Taken together, these findings indicate that CCFWE should be considered a potential anticancer therapy against pathological conditions where angiogenesis is stimulated during tumor development.
Keywords
Angiogenesis; anticancer drug; Coptis chinensis Franch; water extract; endothelial cell; vascular endothelial growth factor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hamsa, T. P. and Kuttan, G. 2012. Antiangiogenic activity of berberine is mediated through the downregulation of hypoxia-inducible factor-1, VEGF, and proinflammatory mediators. Drug Chem. Toxicol. 35, 57-70.   DOI
2 Harper, J. W., Adami, G. R., Wei, N., Keyomarsi, K. and Elledge, S. J. 1993. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75, 805-816.   DOI
3 Hong, Y., Hui, S. C., Chan, T. Y. and Hou, J. Y. 2002. Effect of berberine on regression of pressure-overload induced cardiac hypertrophy in rats. Am. J. Chin. Med. 30, 589-599.   DOI
4 Jang, M. H., Kim, H. Y., Kang, K. S., Yokozawa T. and Park, J. H. 2009. Hydroxyl radical scavenging activities of isoquinoline alkaloids isolated from Coptis chinensis. Arch. Pharm. Res. 32, 341-345.   DOI
5 Ram, V. J. and Kumari, S. 2001. Natural products of plant origin as anticancer agents. Drug News Perspect. 4, 465-482.
6 Scott, L. J. 2007. Bevacizumab: in first-line treatment of metastatic breast cancer. Drugs 67, 1793-1799.   DOI
7 Staton, C. A., Stribbling, S. M., Tazzyman, S., Hughes, R., Brown, N. J. and Lewis, C. E. 2004. Current methods for assaying angiogenesis in vitro and in vivo. Int. J. Exp. Pathol. 85, 233-248.   DOI
8 Wang, X. N., Xu, L. N., Peng, J. Y., Liu, K. X., Zhang, L. H. and Zhang, Y. K. 2009. In vivo inhibition of S180 tumors by the synergistic effect of the Chinese medicinal herbs Coptis chinensis and Evodia rutaecarpa. Planta Med. 75, 1215-1220.   DOI
9 West, D. C. and Burbridge, M. F. 2009. Three-dimensional in vitro angiogenesis in the rat aortic ring model. Methods Mol. Biol. 467, 189-210.
10 Wu, M., Wang, J. and Liu, L. T. 2010. Advance of studies on anti-atherosclerosis mechanism of berberine. Chin. J. Integr. Med. 16, 188-192.   DOI
11 Wu, X., Yang, T., Liu, X., Guo, J. N., Xie, T., Ding, Y., Lin, M. and Yang, H. 2015. IL-17 promotes tumor angiogenesis through Stat3 pathway mediated upregulation of VEGF in gastric cancer. Tumour Biol. 37, 5493-5501.
12 Xu, W., Towers, A. D., Li, P. and Collet, J. P. 2006. Traditional Chinese medicine in cancer care: perspectives and experiences of patients and professionals in China. Eur. J. Cancer Care 15, 397-403.   DOI
13 Yan, D., Jin, C., Xiao, X. H. and Dong, X. P. 2008. Antimicrobial properties of berberines alkaloids in Coptis chinensis Franch by microcalorimetry. J. Biochem. Biophys. Methods 70, 845-849.   DOI
14 Kamath, S., Skeels, M. and Pai, A. 2009. Significant differences in alkaloid content of Coptis chinensis (Huanglian) from its related American species. Chin. Med. 4, 17.   DOI
15 Ji, H. F., Li, X. J. and Zhang, H. Y. 2009. Natural products and drug discovery. Can thousands of years of ancient medical knowledge lead us to new and powerful drug combinations in the fight against cancer and dementia? EMBO Rep. 10, 194-200.   DOI
16 Jia, F., Zou, G., Fan, J. and Yuan, Z. 2010. Identification of palmatine as an inhibitor of West Nile virus. Arch. Virol. 155, 1325-1329.   DOI
17 Jung, H. A., Yoon, N. Y., Bae, H. J., Min, B. S. and Choi, J. S. 2008. Inhibitory activities of the alkaloids from Coptidis Rhizoma against aldose reductase. Arch. Pharm. Res. 31, 1405-1412.   DOI
18 Kingston, D. G. and Newman, D. J. 2007. Taxoids: cancer-fighting compounds from nature. Curr. Opin. Drug Discov. Devel. 10, 130-144.
19 Albini, A., Iwamoto, Y., Kleinman, H. K., Martin, G. R., Aaronson, S. A., Kozlowski, J. M. and McEwan, R. N. 1987. A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res. 47, 3239-3245.
20 Yan, D., Li, J., Xiong, Y., Zhang, C., Luo, J., Han, Y., Wang, R., Jin, C., Qian, H., Li, J., Qiu, L., Peng, C., Lin, Y., Song, X. and Xiao, X. 2014. Promotion of quality standard of herbal medicine by constituent removing and adding. Sci. Rep. 4, 3668.
21 Ali, H. and Dixit, S. 2013. Extraction optimization of Tinospora cordifolia and assessment of the anticancer activity of its alkaloid palmatine. ScientificWorldJournal 2013, 376216.
22 Liu, L. H. and Chen, Z. L. 2012. Analysis of four alkaloids of Coptis chinensis in rat plasma by high performance liquid chromatography with electrochemical detection. Anal. Chim. Acta 737, 99-104.   DOI
23 Aplin, A. C., Fogel, E., Zorzi, P. and Nicosia, R. F. 2008. The aortic ring model of angiogenesis. Methods Enzymol. 443, 119-136.
24 Kim, S. H., Kim, E. C., Kim, W. J., Lee, M. H., Kim, S. Y. and Kim, T. J. 2015. Coptis japonica Makino extract suppresses angiogenesis through regulation of cell cycle-related protein. Biosci. Biotechnol. Biochem. 80, 1095-1106.
25 Kong, X., Wan, H., Su, X., Zhang, C., Yang, Y., Li, X., Yao, L. and Lin, N. 2014. Rheum palmatum L. and Coptis chinensis Franch. exert antipyretic effect on yeast-induced pyrexia rats involving regulation of TRPV1 and TRPM8 expression. J. Ethnopharmacol. 153, 160-168.   DOI
26 Kwon, O. J., Kim, M. Y., Shin, S. H., Lee, A. R., Lee, J. Y., Seo, B. I., Shin, M, R., Choi, H. G., Kim, J. A., Min, B. S., Kim, G. N., Noh, J. S., Rhee, M. H. and Roh, S. S. 2016. Antioxidant and anti-inflammatory effects of Rhei Rhizoma and Coptidis Rhizoma mixture on reflux esophagitis in rats. Evid. Based Complement. Alternat. Med. 2016, 2052180.
27 Lal, B. K., Varma, S., Pappas, P. J., Hobson, R. W. 2nd. and Duran, W. N. 2001. VEGF increases permeability of the endothelial cell monolayer by activation of PKB/akt, endothelial nitric-oxide synthase, and MAP kinase pathways. Microvasc. Res. 62, 252-262.   DOI
28 Lee, B., Kim, K. H., Jung, H. J. and Kwon, H. J. 2012. Matairesinol inhibits angiogenesis via suppression of mitochondrial reactive oxygen species. Biochem. Biophys. Res. Commun. 421, 76-80.   DOI
29 Lee, S. H., Lee, J., Jung, M. H. and Lee, Y. M. 2013. Glyceollins, a novel class of soy phytoalexins, inhibit angiogenesis by blocking the VEGF and bFGF signaling pathways. Mol. Nutr. Food Res. 57, 225-234.   DOI
30 Liu, R., Cao, Z., Pan, Y., Zhang, G., Yang, P., Guo, P. and Zhou, Q. 2013. Jatrorrhizine hydrochloride inhibits the proliferation and neovascularization of C8161 metastatic melanoma cells. Anticancer Drugs 24, 667-676.   DOI
31 Yu, H. H., Kim, K. J., Cha, J. D., Kim, H. K., Lee, Y. E., Choi, N. Y. and You, Y. O. 2005. Antimicrobial activity of berberine alone and in combination with ampicillin or oxacillin against methicillin-resistant Staphylococcus aureus. J. Med. Food 8, 454-461.   DOI
32 Yang, T. C., Chao, H. F., Shi, L. S., Chang, T. C., Lin, H. C. and Chang, W. L. 2014. Alkaloids from Coptis chinensis root promote glucose uptake in C2C12 myotubes. Fitoterapia 93, 239-244.   DOI
33 Yip, N. K. and Ho, W. S. 2013. Berberine induces apoptosis via the mitochondrial pathway in liver cancer cells. Oncol. Rep. 30, 1107-1112.   DOI
34 Yu, D., Fu, S., Cao, Z., Bao, M., Zhang, G., Pan, Y., Liu, W. and Zhou, Q. 2014. Unraveling the novel anti-osteosarcoma function of coptisine and its mechanisms. Toxicol. Lett. 226, 328-336.   DOI
35 Zhang, J., Yang, J. Q., He, B. C., Zhou, Q. X., Yu, H. R., Tang, Y. and Liu, B. Z. 2009. Berberine and total base from Rhizoma Coptis chinensis attenuate brain injury in an aluminum-induced rat model of neurodegenerative disease. Saudi Med. J. 30, 760-766.
36 Zhang, Q., Piao, X. L., Piao, X. S., Lu, T., Wang, D. and Kim, S. W. 2011. Preventive effect of Coptis chinensis and berberine on intestinal injury in rats challenged with lipopolysaccharides. Food Chem. Toxicol. 49, 61-69.   DOI
37 Doyle, J. L. and Haas, T. L. 2009. Differential role of beta-catenin in VEGF and histamine-induced MMP-2 production in microvascular endothelial cells. J. Cell Biochem. 107, 272-283.   DOI
38 Atanasov, A. G., Waltenberger, B., Pferschy-Wenzig, E. M., Linder, T., Wawrosch, C., Uhrin, P., Temml, V., Wang, L., Schwaiger, S., Heiss, E. H., Rollinger, J. M., Schuster, D., Breuss, J. M., Bochkov, V., Mihovilovic, M. D., Kopp, B., Bauer, R., Dirsch, V. M. and Stuppner, H. 2015. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv. 33, 1582-1614.   DOI
39 Benton, G., Kleinman, H. K., George, J. and Arnaoutova, I. 2011. Multiple uses of basement membrane-like matrix (BME/Matrigel) in vitro and in vivo with cancer cells. Int. J. Cancer 128, 1751-1757.   DOI
40 Chrzanowska-Wodnicka, M., Kraus, A. E., Gale, D., White, G. C. 2nd. and Vansluys, J. 2008. Defective angiogenesis, endothelial migration, proliferation, and MAPK signaling in Rap1b-deficient mice. Blood 111, 2647-2656.   DOI
41 Durairajan, S. S., Liu, L. F., Lu, J. H., Chen, L. L., Yuan, Q., Chung, S. K., Huang, L., Li, X. S., Huang, J. D. and Li, M. 2012. Berberine ameliorates ${\beta}$-amyloid pathology, gliosis, and cognitive impairment in an Alzheimer's disease transgenic mouse model. Neurobiol. Aging 33, 2903-2919.   DOI
42 Ge, A. H., Bai, Y., Li, J., Liu, J., He, J., Liu, E. W., Zhang, P., Zhang, B. L., Gao, X. M. and Chang, Y. X. 2014. An activity-integrated strategy involving ultra-high-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry and fraction collector for rapid screening and characterization of the ${\alpha}$-glucosidase inhibitors in Coptis chinensis Franch. (Huanglian). J. Pharm. Biomed. Anal. 100, 79-87.   DOI
43 Zhao, J., Jiang, P. and Zhang, W. D. 2009. Molecular networks for the study of TCM pharmacology. Brief. Bioinform. 11, 417-430.
44 Zhou, H., Jiang, T., Wang, Z., Ren, S., Zhao, X., Wu, W., Jiang, L., Liu, Z. and Teng, L. 2014. Screening for potential ${\alpha}$-glucosidase inhibitors in Coptis chinensis Franch extract using ultrafiltration LC-ESI-MS. Pak. J. Pharm. Sci. 27, 2007-2012.
45 Eccles, S. A., Court, W., Patterson, L. and Sanderson, S. 2009. In vitro assays for endothelial cell functions related to angiogenesis: proliferation, motility, tubular differentiation, and proteolysis. Methods Mol. Biol. 467, 159-181.
46 Fan, T. P., Yeh, J. C., Leung, K. W., Yue, P. Y. and Wong, R. N. 2006. Angiogenesis: from plants to blood vessels. Trends Pharmacol. Sci. 27, 297-309.   DOI
47 Feng, X., Yan, D., Zhao, K. J., Luo, J. Y., Ren, Y. S., Kong, W. J., Han, Y. M. and Xiao, X. H. 2011. Applications of microcalorimetry in the antibacterial activity evaluation of various Rhizoma Coptidis. Pharm. Biol. 49, 348-353.   DOI
48 Ferrara, N., Gerber, H. P. and LeCouter, J. 2003. The biology of VEGF and its receptors. Nat. Med. 9, 669-676.   DOI
49 Friedemann, T., Otto, B., Klatschke, K., Schumacher, U., Tao, Y., Leung, A. K., Efferth, T. and Schroder, S. 2014. Coptis chinensis Franch. exhibits neuroprotective properties against oxidative stress in human neuroblastoma cells. J. Ethnopharmacol. 155, 607-615.   DOI
50 Gensicka, M., Glowacka, A., Dzierzbicka, K. and Cholewinski, G. 2015. Inhibitors of Angiogenesis in Cancer Therapy - Synthesis and Biological Activity. Curr. Med. Chem. 22, 3830-3847.   DOI
51 Mikstacka, R., Stefanski, T. and Rozanski, J. 2013. Tubulininteractive stilbene derivatives as anticancer agents. Cell Mol. Biol. Lett. 18, 368-397.
52 Lu, J., Zhang, K., Nam, S., Anderson, R. A., Jove, R. and Wen, W. 2010. Novel angiogenesis inhibitory activity in cinnamon extract blocks VEGFR2 kinase and downstream signaling. Carcinogenesis 31, 481-488.   DOI
53 Luo, Y., Zhao, H., Liu, Z., Ju, D., He, X., Xiao, C., Zhong, G., Chen, S., Yang, D., Chan, A. S. and Lu, A. 2010. Comparison of the enteric mucosal immunomodulatory activity of combinations of Coptis chinensis Franch. Rhizomes and Evodia rutaecarpa (Juss.) Benth. Fruits in mice with dextran sulphate sodium-induced ulcerative colitis. Planta Med. 76, 766-772.   DOI
54 Majeti, B. K., Lee, J. H., Simmons, B. H. and Shojaei, F. 2013. VEGF is an important mediator of tumor angiogenesis in malignant lesions in a genetically engineered mouse model of lung adenocarcinoma. BMC Cancer 13, 213.   DOI
55 Morgan, D. O. 1995. Principles of CDK regulation. Nature 374, 131-134.   DOI
56 Nagase, H. and Woessner, J. F. Jr. 1999. Matrix metalloproteinases. J. Biol. Chem. 274, 21491-21494.   DOI
57 Oberlies, N. H. and Kroll, D. J. 2004. Camptothecin and taxol: historic achievements in natural products research. J. Nat. Prod. 67, 129-135.   DOI
58 Park, E. K., Rhee, H. I., Jung, H. S., Ju, S. M., Lee, Y. A., Lee, S. H., Hong, S. J., Yang, H. I., Yoo, M. C. and Kim, K. S. 2007. Antiinflammatory effects of a combined herbal preparation (RAH13) of Phellodendron amurense and Coptis chinensis in animal models of inflammation. Phytother. Res. 21, 746-750.   DOI
59 Puyraimond, A., Weitzman, J. B., Babiole, E. and Menashi, S. 1999. Examining the relationship between the gelatinolytic balance and the invasive capacity of endothelial cells. J. Cell. Sci. 112, 1283-1290.
60 Goey, A. K., Chau, C. H., Sissung, T. M., Cook, K. M., Venzon, D. J., Castro, A., Ransom, T. R., Henrich, C. J., McKee, T. C., McMahon, J. B., Grkovic, T., Cadelis, M. M., Copp, B. R., Gustafson, K. R. and Figg, W. D. 2016. Screening and Biological Effects of Marine Pyrroloiminoquinone Alkaloids: Potential Inhibitors of the HIF-$1{\alpha}$/p300 Interaction. J. Nat. Prod. 79, 1267-1275.   DOI
61 Gordaliza, M. 2007. Natural products as leads to anticancer drugs. Clin. Transl. Oncol. 9, 767-776.   DOI
62 Greenberg, J. I., Shields, D. J., Barillas, S. G., Acevedo, L. M., Murphy, E., Huang, J., Scheppke, L., Stockmann, C., Johnson, R. S., Angle, N. and Cheresh, D. A. 2008. A role for VEGF as a negative regulator of pericyte function and vessel maturation. Nature 456, 809-813.   DOI