• Title/Summary/Keyword: 현탁중합

Search Result 52, Processing Time 0.026 seconds

Preparation of Polystyrene particles based on interfacial stability of suspension polymerization (현탁중합의 계면안정에 따른 폴리스티렌 입자 제조)

  • 이진호;이상남;박문수;김은경;문명준
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.20 no.1
    • /
    • pp.65-78
    • /
    • 2002
  • The suspension polymerization of styrene was carried out to obtain the narrow-size distribution of particle by using poly(vinyl alcohol) (PVA) as suspension stabilizer according to the degree of hydrolysis and the molecular weight. The stabilizing properties of suspension are also dependent on the interfacial tension of aqueous solution when PVA is added. When the polymerization process was carried out with low hydrolyzed PVA, it gave single, well-defined particles, while high hydrolyzed PVA gave clusters. The size of particle produced in this study ranged between 5${\mu}{\textrm}{m}$ and 10${\mu}{\textrm}{m}$. The suspending agent, PVA, influences on the drop size and drop stability, When the molecular weight of PVA is increased, the drop size decreases and the drops become more stable toward coalescence. An increase in the PVA concentration decreases the mean drop size and narrows the drop size distribution.

  • PDF

Preparation of Copoly(styrene/butyl methacrylate) Beads and Composite Particles containing Carbon Black with Hydrophobic Silica as a Stabilizer in Aqueous Solution (수용액에서의 소수성실리카를 이용한 스티렌/부틸메타크릴레이트 입자 및 카본블랙을 함유한 복합체 입자의 합성)

  • Chung, Kyung-Ho;Park, Moon-Soo
    • Elastomers and Composites
    • /
    • v.47 no.1
    • /
    • pp.43-53
    • /
    • 2012
  • A suspension copolymerization of styrene and butyl methacrylate (BMA) in the aqueous phase was conducted at a selected temperature between 65 and $95^{\circ}C$. Hydrophobic silica was selected as a stabilizer and azobisisobutyronitrile (AIBN) as an initiator. Optimum dispersion of silica in water was obtained at pH 10 while polymerization reaction was run at pH 7. TGA and EDS measurements revealed that 90% of silica functioned as a stabilizer and 10% were incorporated into polymeric particles. Average particle diameter decreased with increasing amounts of stabilizer. Molecular weights displayed an increase when the stabilizer concentration reached 1.67 wt%. An increase in the initiator concentration and/or reaction temperature raised the reaction rate but decreased molecular weights. Particle diameter was nearly independent of the initiator concentration and reaction temperature. An increase in the BMA proportion decreased the glass transition temperature and increased the particle diameter with irregularity in shape. Incorporation of carbon black into the particles composed of styrene and BMA prolonged the reaction time before reaching completion. We have confirmed that a suspension copolymerization of styrene and BMA with hydrophobic silica as a stabilizer can produce spherical composite particles with $1-30{\mu}m$ in diameter containing carbon black.

Microencapsulation of SrAl2O4 : Eu2+,Dy3+ Phosphorescent Phosphor for Enhanced Visibility of Road Lanes (차선의 시인성 향상을 위한 SrAl2O4 : Eu2+,Dy3+ 축광 마이크로 캡슐화에 관한 연구)

  • Park, Jae Il;Jeong, Soo Hwan;Cheong, In Woo
    • Journal of Adhesion and Interface
    • /
    • v.17 no.3
    • /
    • pp.110-116
    • /
    • 2016
  • A decrease in the retro-reflectivity of glass-bead-covered road paint because of a rainwater film significantly reduces the visibility of drivers at night, and has been considered as a critical cause of traffic accidents. For enhanced visibility, the microencapsulation of hydrophobically modified $SrAl_2O_4:Eu^{2+}$,$Dy^{3+}$ phosphorescent phosphor was carried out via suspension polymerization of methyl methacrylate (MMA). The effects of surface modification agent and radical initiator types, loading amount of phosphorescent phosphor, and microcapsule size on the phosphor content ($W_{TGA}$) in the luminous poly(methyl methacrylate) (PMMA) microcapsules were investigated by thermogravimetric analyses (TGA). It was found that the $W_{TGA}$ value was ranged from 7 wt% to 81 wt%, which suggests suspension polymerization is suitable for the preparation of luminous microcapsules with a wide range of phosphor content. At a lower loading amount of phosphor, the $W_{TGA}$ value obviously increased as the microcapsule size decreased; however, the $W_{TGA}$ values with a higher loading amount of phosphor were less affected by the microcapsule size. The luminous microcapsules with the size range of $425{\sim}710{\mu}m$ were collected and tested as a luminous road lanes. It was found that luminance intensities of the microcapsule-coated plates remained higher than $300mcd/m^2$ for up to 100 s in darkness after 20 min of light emitting diode lamp irradiation. The results suggest that the luminous microcapsules can be a candidate for the replacement of glass beads for enhanced visibility of drivers.

Preparation of Poly(butyl methacrylate) Composite Beads containing Carbon Black by Suspension Polymerization (현탁중합법에 의한 카본블랙을 함유하는 폴리뷰틸메타크릴레이트 복합체 입자의 합성)

  • Moon, Ji-Yeon;Park, Moon-Soo
    • Elastomers and Composites
    • /
    • v.43 no.3
    • /
    • pp.157-165
    • /
    • 2008
  • Suspension polymerization was carried out to synthesize poly(butyl methacrylate) (PBMA) composite particles containing carbon black. Water was selected as a reaction medium, hydrophobic silica as a stabilizer and azobisisobutyronitrile as an initiator. Concentration of stabilizer was varied from 0.67 to 2.55 weight% with respect to the water, and that of initiator was varied from 0.25 to 3.00 weight% with respect to the butyl methacrylate (BMA) monomer. All polymerization reactions were conducted at 75$^{\circ}C$. It is found that stabilizer concentration has no impact on reaction kinetics, while an increase in initiator concentration enhances polymerization reaction rate. Increase of carbon black concentration from 1 to 3 to 5 wt% into PBMA displayed progressive decrease in reaction conversion. The particle diameter of PBMA composite particles containing carbon black was found to be between 5 and 30 ${\mu}m$. Glass transition was determined to range from 23.8 to 24.7$^{\circ}C$, irrespective of variation in the concentration of stabilizer, initiator or carbon black.

Effects of Treatment Method and Environmental Factors on the Bacteriostatic Activity Condensed Phosphates (처리조건이나 환경요인이 중합인산염의 항균력에 미치는 영향)

  • CHANG Dong-Suck;LEE Tai-Seek
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.23 no.5
    • /
    • pp.394-400
    • /
    • 1990
  • In the previous paper, we reported that the bacteriostatic effect of condensed phosphate. The present study was intended to observe influence of various environmental factors on the bacteriostatic effect of condensed phosphates in the laboratory media, in order to get the information on the possibility to use the phosphate as food preservative. Bacteriostatic effect of sodium polyphosphate was not reduced by the heating at 100 for 1 hour, but it was considerably decreased by heating at $121^{\circ}C$ for 15 min and the phosphate sensitivity of bacteria was increased by freezing and heating. On the other hand, the strong bacteriostatic activity of condensed phosphate was observed below pH 6.5 in nutrient broth culture, and the activity was decreased by the addition of $CaCl_2$, KCl and $MgSO_4$.

  • PDF

Flow Behavior of Polystyrene and Poly(butyl methacrylate) Composite Particles Filled with Varying Concentrations of Carbon Black (다양한 농도의 카본블랙을 함유하는 폴리스티렌 및 폴리뷰틸메타크릴레이트 복합체 입자의 유동성)

  • Park, Moon-Soo
    • Elastomers and Composites
    • /
    • v.44 no.3
    • /
    • pp.336-342
    • /
    • 2009
  • We measured shear viscosity of polystyrene (PS) and poly(butyl methacrylate) (PBMA) particles, with a capillary rheometer, prepared by suspension polymerization with 1.0 wt% hydrophobic silica as a stabilizer by varying the initiator concentration at $75^{\circ}C$. PS particles with weight average molecular weight of 66,500 g/mol displayed a Newtonian behaior at low shear rates at $190^{\circ}C$. With increasing molecular weight, PS particles showed shear thinning over the entire range of shear rates. For PBMA particles, steady shear measurement was carried out at $170^{\circ}C$. PBMA particles with weight average molecular weight of 156,700 g/mol showed a Newtonian behaior only at low shear rates. PBMA particles also showed shear thinning with an increase in molecular weight and its pattern similar to that of PS. When carbon black was incorporated into PS and PBMA polymers, steady shear measurement was conducted at $170^{\circ}C$. An increase in carbon black concentration in PS and PBMA composite particles exhibited a progressive increase in shear viscosity. The increase in shear viscosity, however, was less pronounced compared to an increase as a function of molecular weight. Preparing PS composites containing carbon black by internal mixing resulted in an increase in shear viscosity. Its increase, however, was found to be less than that shown in PS composite particles. We speculate that this is caused by an enhanced dispersion of carbon black particles with an internal mixer. Yield behavior was not observed in any of the samples we selected in this experiment.

Synthesis of Enzyme-Containing PEG Hydrogel Nanospheres for Optical Biosensors (광바이오센서용 효소를 함유한 PEG 수화젤 나노입자의 합성)

  • Kim, Bum-Sang
    • Polymer(Korea)
    • /
    • v.29 no.6
    • /
    • pp.613-616
    • /
    • 2005
  • In this word as the first step to develop optical biosensors for a single cell level analysis, the preparation method of nano-scale polymer hydrogel spheres containing an enzyme was set up and the feasibility of the spheres as optical biosensors was investigated. The horseradish peroxidase (HRP) was encapsulated in the PEG hydrogel spheres by suspension photopolymerization, yielding spheres of the average size of 305 nm. After the polymerization, the incorporation and activity of HRP within the spheres were determined by the production of fluorescence resulted from the enzymatic reaction between HRP and $\H_{2}O_{2}$. The fluorescence emission response of the HRP-loaded PEG hydrogel spheres increased by nearly 300$\%$ as hydrogen peroxide concentration was changed from 0 to 11 nM in the presence of Amplex Red. The results suggest that the method to prepare the PEG hydrogel nanospheres containing an enzyme could be used for developing optical biosensors to measure various analytes in the very small samples like a single cell.

Manufacture of Yellow Ocher Polystyrene-Based Hybrid Nanoparticles for High-Performance PET Applications (고성능 페트 생산용 폴리스티렌 기반 하이브리드형 나노구조체 생산)

  • Choi, Jae Bong;Kim, Sanghee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.8
    • /
    • pp.701-707
    • /
    • 2014
  • The ecofriendly yellow ocher is used in the manufacturing of cosmetics, construction, and food packaging. The polyethylene terephthalate (PET) used for manufacturing food containers has a microporous structure that causes aeration. Hydrophilic yellow ocher may be applied to hydrophobic PET by surface modification to overcome this issue. The aim of this study is to fabricate a yellow ocher polystyrene hybrid structure in the form of nanoparticles using an optimizing molar ratio of styrene, divinylbenzene, and potassium peroxodisulfate for use in emulsion polymerization. The polymerization was conducted in a yellow ocher suspension that was prepared by dispersing mechanically ground yellow ocher in DI water. The prepared hybrid structure was measured using scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction. The measurement revealed the spherical morphology and Si component that resulted from the yellow ocher in the polystyrene particles. We expect that this hybrid structure would be used as platform material to minimize aeration in PET.

Mechanical Properties of Denture Base Resin through Controlling of Particle Size and Molecular Weight of PMMA (폴리(메틸 메타아크릴레이트) 입자 크기 및 분자량 제어에 따른 의치상 재료로서의 기계적 물성 변화)

  • 양경모;정동준
    • Polymer(Korea)
    • /
    • v.27 no.5
    • /
    • pp.493-501
    • /
    • 2003
  • Poly(methyl methacrylate) (PMMA) particles, denture base resin, were synthesized by suspension polymerization through control of polymerization conditions (stabilizer concentration, co-monomer concentration, and the agitation speed) and evaluated changes in molecular weight and particle size. We also investigated their mechanical properties of compression-molded samples which were from synthesized polymer powder mixed with methyl methacrylate (MMA) solution. under the condition of volumetric ratio as 2:1(PMMA powder and MMA solution). The results shows that the mechanical properties were mainly affected by particle size over 100 ${\mu}$m (in particle size) and by molecular weight under 100 ${\mu}$m (in particle size). From these results, we concluded that the most appropriate particle size of PMMA powder for heat-cured denture base resins is around 100 ${\mu}$m. and its molecular weight is around 300000 (M$\sub$n/).

Synthesis and Characterization of Polyurethane bead/silica Hybrid Composites (폴리우레탄 비드/실리카 복합체의 합성 및 그 특성)

  • Yang, Seung Nam;Yim, Gie Hong;Kim, Nam Ki
    • Applied Chemistry for Engineering
    • /
    • v.18 no.4
    • /
    • pp.386-390
    • /
    • 2007
  • In this study, polyurethane prepolymers were synthesized from polycaprolactonediol (PCDs. M.W. 530, 830, 1000, 1250, and 2000) and polycaprolactonetriol (PCTs. M.W. 300 and 900), and hexamethylenediisocyanate (HMDI). Polyurethane beads was prepared from the different prepolymers by a two-step suspension polymerization. The particle size of polyurethane beads was investigated by particle size analyzer. The beads were $10{\sim}30{\mu}m$ in size. The structure of beads was confirmed by FT-IR spectrometer. Their thermal properties were analyzed by TGA. Glass transition temperatures ($T_g$) of the beads were in the range of $-23{\sim}-53^{\circ}C$ and decreased with the increase of the PCD molecular weight. In order to prevention the cohesion of beads, the beads were coated with tetraethoxysilane (TEOS).