Browse > Article
http://dx.doi.org/10.17702/jai.2016.17.3.110

Microencapsulation of SrAl2O4 : Eu2+,Dy3+ Phosphorescent Phosphor for Enhanced Visibility of Road Lanes  

Park, Jae Il (School of Applied Chemical Engineering, Kyungpook National University)
Jeong, Soo Hwan (School of Applied Chemical Engineering, Kyungpook National University)
Cheong, In Woo (School of Applied Chemical Engineering, Kyungpook National University)
Publication Information
Journal of Adhesion and Interface / v.17, no.3, 2016 , pp. 110-116 More about this Journal
Abstract
A decrease in the retro-reflectivity of glass-bead-covered road paint because of a rainwater film significantly reduces the visibility of drivers at night, and has been considered as a critical cause of traffic accidents. For enhanced visibility, the microencapsulation of hydrophobically modified $SrAl_2O_4:Eu^{2+}$,$Dy^{3+}$ phosphorescent phosphor was carried out via suspension polymerization of methyl methacrylate (MMA). The effects of surface modification agent and radical initiator types, loading amount of phosphorescent phosphor, and microcapsule size on the phosphor content ($W_{TGA}$) in the luminous poly(methyl methacrylate) (PMMA) microcapsules were investigated by thermogravimetric analyses (TGA). It was found that the $W_{TGA}$ value was ranged from 7 wt% to 81 wt%, which suggests suspension polymerization is suitable for the preparation of luminous microcapsules with a wide range of phosphor content. At a lower loading amount of phosphor, the $W_{TGA}$ value obviously increased as the microcapsule size decreased; however, the $W_{TGA}$ values with a higher loading amount of phosphor were less affected by the microcapsule size. The luminous microcapsules with the size range of $425{\sim}710{\mu}m$ were collected and tested as a luminous road lanes. It was found that luminance intensities of the microcapsule-coated plates remained higher than $300mcd/m^2$ for up to 100 s in darkness after 20 min of light emitting diode lamp irradiation. The results suggest that the luminous microcapsules can be a candidate for the replacement of glass beads for enhanced visibility of drivers.
Keywords
Phosphorescent phosphor; Microencapsulation; Road visibility; Suspension polymerization;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. W. Lee, S. A. Cardi, and S. Corrigan, "Implementation and evaluation of traffic marking recesses for application of thermoplastic pavement markings on modified open graded friction course", http://www.uvm.edu/-transctr/pdf/netc/netcr23_95-3.pdf (2000).
2 C. G. Lee, H. S. Lee, and H. U. Oh, Kor. Soc. Road. Engineers, 14, 9 (2012).
3 http://www.euroadbead.eu/wp-content/uploads/2015/04/SWARCO-presentation-glassbeads-dec07.pdf.
4 A. C. Miller and J. C. Berg, Compos. Part A: Appl. S., 34, 327 (2003).   DOI
5 L. R. Gilbert and A. J. Ouderkirk, U.S. Patent, 5, 699,188 (1997).
6 N. Sombatsompop and K. Chaochanchaikul, J. Appl. Polym. Sci., 96, 213 (2005).   DOI
7 R. P. Thornton, R. G. Elliman, and J. S. Williams, J. Mater. Res., 5, 1003 (1990).   DOI
8 R. Bacero, D. To, J. P. Arista, M. K. Dela Cruz, J. P. Villaneva, and F. A. Uy, J. Eastern. Asia. Soc. Transp. Stud., 11, 1726 (2015).
9 X. Li, H. Wang, L. Guan, Y. Fu, Z. Guo, K. Yuan, L. Tie, Z. Yang, and F. Teng, J. Rare. Earths., 33, 346 (2015).   DOI
10 Y. C. Kang, S. B. Park, I. W. Lenggoro, and K. Okuyama, J. Phys. Chem. Solids., 60, 379 (1999).   DOI
11 T. L. Metroke, O. Kachurina, and E. T. Knobbe, Prog. Org. Coat., 44, 295 (2002).   DOI
12 L. Sanchez, P. Sanchez, M. Carmona, A. de Lucas, and J. F. Rodriguez, Colloid Polym. Sci., 286, 1019 (2008).   DOI
13 T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, J. Electrochem. Soc., 143, 2670 (1996).   DOI
14 P. F. Smet, N. Avci, K. V. den Eeckhout, and D. Poelman, Opt. Mater. Express, 2, 1306 (2012).   DOI
15 S. Kango, S. Kalia, A. Celli, J. Njuguna, Y. Habibi, and R. Kumar, Prog. Polym. Sci., 38, 1232 (2013).   DOI
16 M. Uyanik, Ph. D. Thesis. Saarland University, Saarbrucken (2008).
17 C. W. Yi, J. Korean. Inst. Illum. Elect. Installation Eng., 25, 32 (2011).
18 D. M. Qi, Y. Z. Bao, Z. X. Weng, and Z. M. Huang, Polymer, 47, 4622 (2006).   DOI
19 I. P. Sahu, D. P. Bisen, N. Brahme, and R. K. Tamrakar, J. Radiat. Res. Appl. Sci., 8, 104 (2015).   DOI
20 D. P. Bisen and R. Sharma, Luminescence, 31, 394 (2016).   DOI
21 G. S. Patil, R. H. Matthews, and D. G. Cornwell, J. Lipid Res., 17, 197 (1976).
22 F. H. Winslow and W. Matreyek, Ind. Eng. Chem., 43, 1108 (1951).   DOI
23 E. Vivaldo-Lima, P. E. Wood, A. E. Hamielec, and A. Penlidis, Ind. Eng. Chem. Res., 36, 939 (1997).   DOI
24 L. Sanchez, P. Sanchez, M. Carmona, A. de Lucas, and J. F. Rodriguez, Colloid Polym. Sci., 286, 1019 (2008).   DOI
25 A. E. Alexander and D. H. Napper, Prog. Polym. Sci., 3, 145 (1971).   DOI
26 R. E. Rojas-Hernandez, F. Rubio-Marcos, E. Enriquez, M. A. De La Rubia, and J. F. Fernandez, RSC Adv., 5, 42559 (2015).   DOI
27 N. V. N. Jyothi, P. M. Prasanna, S. N. Sakarkar, K. S. Prabha, P. S. Ramaiah, and G. Y. Srawan, J. Microencapsul., 27, 187 (2010).   DOI
28 J. A. Alduncin, J. Forcada, and J. M. Asua, Macromolecules, 27, 2256 (1994).   DOI
29 S. B. Mishra, A. K. Mishra, A. S. Luyt, N. Revaprasadu, K. T. Hillie, W. J. vdM Steyn, E. Coetsee, and H. C. Swart, J. Appl. Polym. Sci., 115, 579 (2010).   DOI
30 Y. J. He, Powder. Technol., 147, 59 (2004).   DOI
31 Y. Yokoyama, K. Fuchigami, Y. Taguchi, and M. Tanaka, J. Encapsul. Adsorpt. Sci., 3, 93 (2013).   DOI