• Title/Summary/Keyword: 헬리컬 모드

Search Result 9, Processing Time 0.025 seconds

Helical Instability Wave Excitation of Swirling Jets (스월제트에 관한 헬리컬 불안정파 자극)

  • Lee, Won-Joong;Taghavi, Ray-R.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.1
    • /
    • pp.48-53
    • /
    • 2005
  • The purpose of this investigation is to explore the possibility of using artificial mechanical means for excitation of shear layers with application in swirling jet mixing enhancement. For this purpose, a mechanical excitation device was designed and fabricated. The major system components consist of two subsonic nozzles, one swirl generator, and the excitation device. The experiments were carried out at various helical excitation modes; i.e., m=+0, m=$\pm$1, m=$\pm$2, m=$\pm$3, and m=$\pm$4. Axial mean velocity measurements were made with plane and helical wave excitation using a hot-wire anemometer. The results are compared with the baseline (plane-wave excitation) at various helical modes. The acquired data is presented in 3-D mesh plots and 2-D contour plots. It was observed that new device was effective in excitation of the helical instability waves and resulting in mixing enhancement of the swirling jet.

The design of bent monopole antenna for 400MHz ISM band applications (400MHz ISM대역용 굴곡형 모노폴 안테나의 설계)

  • Lee, Young-Soon
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.2
    • /
    • pp.189-196
    • /
    • 2011
  • In order to subsitute for the normal mode helical wire antenna, bent monopole antenna combined with a helical structure is proposed as a kind of printed antenna. The antenna which can be operated at 418MHz has been simulated and designed by use of a commercial EM simulator Microwave Studio(MWS). It has been observed that the proposed antenna has good agreements between simulated results and measured results such as the return loss and the radiation pattern. The proposed antenna has been applied practically to the wireless remote controller operationg at 418MHz. It has been observed that the use of the proposed antenna result in similar antenna performance from view point of radiation power when compared with the use of the previous normal mode helical antenna.

Digital Filter Model for Analog Helical Coil Spring Reverberator (헬리컬 코일 스프링 잔향기의 디지털 필터 모델)

  • Park Joon;Chon Sang-Bae;Lee Jong-Hoon;Sung Koeng-Mo;Song Sang-Seob
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.6
    • /
    • pp.291-297
    • /
    • 2006
  • This paper proposes a new Digital Reverberator that models Analog Helical Coil Spring Reverberator for guitar amplifiers. While the conventional digital reverberators are proposed to provide better sound field mainly based on room acoustics, no algorithm or analysis of digital reverberators those model Helical Coil Spring Reverberator was proposed. Considering the fact that approximately $70{\sim}80$ percent of guitar amplifiers are still with Helical Coil Spring Reverberator, research was performed based not on Room Acoustics but on Helical Coil Spring Reverberator itself as an effector. After performing simulations with proposed algorithm, it was confirmed that the Digital Reverberator by proposed algorithm provides perceptually equivalent response to the conventional Analog Helical Coil Spring Reverberators.

Free Vibration Analysis of Helical Springs (헬리컬 스프링의 자유진동 해석)

  • 김월태;정명조;김현수;이영신
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.977-983
    • /
    • 2003
  • Free vibration analysis of helical springs was performed by the use of the commercial finite element analysis program, ANSYS. The investigation of national frequency was focused on the effect of various parameters such as boundary conditions, spring indices, number of coil turns and helix angles which are considered to affect the free vibration of a spring. The finite element method was validated by comparison with the result of a previouosly published literature. The similarity of frequency trend was shown among three boundary conditions: clamped-clamped, free-free, simpliy supported-simply supported but there was no similarity in light of mode shapes among them. Several modes showed similar frequencies on and near the frequencies identified by the natural frequency formula of Wahl. Natural frequencies increased with spring indices and number of turns decreasing and with helix angles increasing. The results investigated by finiete element method were compared with the experemental result and theoretical result and showed a good agreement among them.

  • PDF

Comparison of Dynamic Characteristics of Spur Gears and Helical Gears (스퍼기어와 헬리컬기어의 동적 특성 비교)

  • Park, Chan-Il;Cho, Do-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.4
    • /
    • pp.358-364
    • /
    • 2012
  • This work dealt with dynamic characteristics of spur gear and helical gear system to understand the gear vibration and noise. To find out dynamic characteristics in the gear system, a finite element model and an analytic model for the gear system were used. Using the models, the natural frequency and mode-shape characteristics of spur gears and helical gears were calculated. Two models show that natural frequencies of helical gears were lower than those of spur gears. Mode-shape characteristics of gear pairs by analytical model and some issues of finite element modeling were also discussed. Impact test was used to validate the finite element model.

Effect of Temperature on Interlaminar Fracture Toughness of Filament-Wound Carbon/Epoxy Composites (필라멘트 와인딩된 카본/에폭시 복합재의 층간파괴인성에 미치는 온도 영향)

  • Im, JaeMoon;Shin, KwangBok;Hwang, Taekyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.5
    • /
    • pp.491-497
    • /
    • 2015
  • This paper reports an experimental study for evaluating the effect of temperature on the mode I, mode II and mixed-mode interlaminar fracture toughness of adhesive joints with a curved cross-section of filament-wound dome-separated composite pressure vessel. Mode I and mixed-mode interlaminar fracture toughness were evaluated using DCB specimens, while mode II interlaminar fracture toughness was determined using ENF specimens. $[{\pm}10^{\circ}]_6$, $[{\pm}27^{\circ}]_6$ and ($[{\pm}10^{\circ}]_3/FM73/[{\pm}27^{\circ}]_3$) winding specimens with the curved cross-section were considered. In-situ temperature environments were simulated with a range of $-30^{\circ}C-60^{\circ}C$ using an environmental chamber and furnace. Experimental results on the effect of temperature indicate that interlaminar fracture toughness tends to be high at low temperature and is degraded with increase in temperature. For specimen types, it was found that interlaminar fracture toughness of $[{\pm}10^{\circ}]_3/FM73/[{\pm}27^{\circ}]_3$ winding specimens considered as adhesive joints of dome and helical part was higher than other specimens.

The Prediction of the Dynamic Transmission Error for the Helical Gear System (헬리컬 기어계의 동적 전달오차의 예측)

  • Park, Chan-Il;Cho, Do-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1359-1367
    • /
    • 2004
  • The purpose of this study is to predict the dynamic transmission error of the helical gear system. To do so, the equations of motion in the helical gear system which consists of motor, coupling, gear, torque sensor, and brake are derived. As the input parameters, the mass moment of inertia by a 3D CAD software and the equivalent stiffness of the bearings and shaft are calculated and the coupling stiffness is measured. The static transmission error as an excitation is calculated by in-house program. Dynamic transmission error is predicted by solving the equations of motion. Mode shape, the dynamic mesh force and the bearing force are also calculated. In this analysis, the relationship between the dynamic mesh force and the bearing force and mode shape behavior in gear mesh are checked. As a result, the magnitude of mesh force is highly related with the gear mesh behavior in mode shape. The finite element analysis is conducted to find out the natural frequency of gear system. The natural frequencies by finite element analysis have a good agreement with the results by equation of motion. Finally, dynamic transmission error is measured by the specially designed experiment and the results by equation of motion are validated.

Asymmetric Dipole Antenna for Pen-Type Wireless Presenter Having Metallic Cylinder Case as a Radiating Element (금속 원통 케이스를 방사소자로 활용한 펜타입 무선 프리젠터용 비대칭 다이폴 안테나)

  • Bang, Ji Hoon;Kim, Young Min;Yoo, Tae Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.10
    • /
    • pp.883-891
    • /
    • 2016
  • In this paper, we propose an asymmetric dipole antenna utilizing the metal case as a ground radiator for a pen-type wireless presenter which operates in the ISM frequency band(2.4~2.48 GHz). A normal mode helix mounted on the top end of the long metallic cylinder case which acts as the ground plane takes the form of the asymmetric dipole structure in the proposed antenna. The metallic cylinder case which performs as a radiating element increases the inherent narrow bandwidth and low gain of the helix. The effects of the hand contacts with the metal case on the antenna performance are measured and analyzed with a specially designed human phantom. Experimental results show that the -10 dB return loss bandwidth of the proposed antenna in free space(no hand contact) is 200 MHz that ranges from 2.3 to 2.5 GHz and the maximum gain is measured to be 5 dBi. Under the normal operating condition where the metal case is contacted with a human hand, the bandwidth is 480 MHz from 2.24 to 2.72 GHz. The maximum gain is 2 dBi, lowered by 3 dB due to the hand contact.

Design of Koch Curve Microstrip Patch Antenna for Miniaturization Structure (소형화 구조를 위한 koch curve 마이크로스트립 패치 안테나 설계)

  • Kim, Sun-Woong;Kim, Gul-Bum;Yun, Jung-Hyun;Choi, Dong-You
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.12
    • /
    • pp.2823-2830
    • /
    • 2014
  • The antenna miniaturization technique involves the increment of the electrical length of the resonator the variation of the physical appearance of the antenna. The most typical method of size reduction is designing helical antenna, meander antenna, and fractal antenna. Size reduction using fractal antenna is proposed in this paper. Fractal koch curve has been etched in microstrip patch antenna to downsize the antenna at ISM (Industrial Scientific and Medical) frequency band of 2.45 GHz koch curve microstrip patch antenna ha FR4 epoxy substrate with dielectric constant 4.7, loss tangent equal to 0.02 and dielectric high of 1.6 mm. The designed antenna is fabricated using etching process. The fabricated antenna has return loss of 2.45 GHz, VSWR of 1.1492, and impedance is matched to $46{\Omega}$.